Skip to main content

Nonconvex Regularization for Network Slimming: Compressing CNNs Even More

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12509))

Included in the following conference series:

Abstract

In the last decade, convolutional neural networks (CNNs) have evolved to become the dominant models for various computer vision tasks, but they cannot be deployed in low-memory devices due to its high memory requirement and computational cost. One popular, straightforward approach to compressing CNNs is network slimming, which imposes an \(\ell _1\) penalty on the channel-associated scaling factors in the batch normalization layers during training. In this way, channels with low scaling factors are identified to be insignificant and are pruned in the models. In this paper, we propose replacing the \(\ell _1\) penalty with the \(\ell _p\) and transformed \(\ell _1\) (T\(\ell _1\)) penalties since these nonconvex penalties outperformed \(\ell _1\) in yielding sparser satisfactory solutions in various compressed sensing problems. In our numerical experiments, we demonstrate network slimming with \(\ell _p\) and T\(\ell _1\) penalties on VGGNet and Densenet trained on CIFAR 10/100. The results demonstrate that the nonconvex penalties compress CNNs better than \(\ell _1\). In addition, T\(\ell _1\) preserves the model accuracy after channel pruning, and \(\ell _{1/2, 3/4}\) yield compressed models with similar accuracies as \(\ell _1\) after retraining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aghasi, A., Abdi, A., Romberg, J.: Fast convex pruning of deep neural networks. SIAM J. Math. Data Sci. 2(1), 158–188 (2020)

    Article  MathSciNet  Google Scholar 

  2. Alvarez, J.M., Salzmann, M.: Learning the number of neurons in deep networks. In: Advances in Neural Information Processing Systems. pp. 2270–2278 (2016)

    Google Scholar 

  3. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  Google Scholar 

  4. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  Google Scholar 

  5. Cao, W., Sun, J., Xu, Z.: Fast image deconvolution using closed-form thresholding formulas of \(L_q (q= 1/2, 2/3)\) regularization. J. Vis. Commun. Image Represent. 24(1), 31–41 (2013)

    Article  Google Scholar 

  6. Changpinyo, S., Sandler, M., Zhmoginov, A.: The power of sparsity in convolutional neural networks. arXiv preprint arXiv:1702.06257 (2017)

  7. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14(10), 707–710 (2007)

    Article  Google Scholar 

  8. Chartrand, R., Staneva, V.: Restricted isometry properties and nonconvex compressive sensing. Inverse Prob. 24(3), 035020 (2008)

    Article  MathSciNet  Google Scholar 

  9. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. pp. 3869–3872. IEEE (2008)

    Google Scholar 

  10. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  11. Chen, W., Wilson, J., Tyree, S., Weinberger, K., Chen, Y.: Compressing neural networks with the hashing trick. In: International conference on machine learning. pp. 2285–2294 (2015)

    Google Scholar 

  12. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: Training deep neural networks with binary weights during propagations. In: Advances in neural information processing systems. pp. 3123–3131 (2015)

    Google Scholar 

  13. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure within convolutional networks for efficient evaluation. In: Advances in neural information processing systems. pp. 1269–1277 (2014)

    Google Scholar 

  14. Dinh, T., Xin, J.: Convergence of a relaxed variable splitting method for learning sparse neural networks via \(\ell _1\),\(\ell _0\), and transformed-\(\ell _1\) penalties. In: Proceedings of SAI Intelligent Systems Conference. pp. 360–374. Springer (2020)

    Google Scholar 

  15. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

    Article  MathSciNet  Google Scholar 

  16. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems. pp. 1135–1143 (2015)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 1026–1034 (2015)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778 (2016)

    Google Scholar 

  19. Hu, H., Peng, R., Tai, Y.W., Tang, C.K.: Network trimming: a data-driven neuron pruning approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250 (2016)

  20. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4700–4708 (2017)

    Google Scholar 

  21. Huang, G., Sun, Yu., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39

    Chapter  Google Scholar 

  22. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning. pp. 448–456 (2015)

    Google Scholar 

  23. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low rank expansions. arXiv preprint arXiv:1405.3866 (2014)

  24. Jung, H., Ye, J.C., Kim, E.Y.: Improved k-t blast and k-t sense using focuss. Phys. Med. Biol. 52(11), 3201 (2007)

    Article  Google Scholar 

  25. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. In: Advances in Neural Information Processing Systems. pp. 1033–1041 (2009)

    Google Scholar 

  26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems. pp. 1097–1105 (2012)

    Google Scholar 

  27. Li, F., Zhang, B., Liu, B.: Ternary weight networks. arXiv preprint arXiv:1605.04711 (2016)

  28. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710 (2016)

  29. Li, Y., Wu, C., Duan, Y.: The \(\text{ TV }p\) regularized mumford-shah model for image labeling and segmentation. IEEE Trans. Image Process. 29, 7061–7075 (2020)

    Article  MathSciNet  Google Scholar 

  30. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  31. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2736–2744 (2017)

    Google Scholar 

  32. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3431–3440 (2015)

    Google Scholar 

  33. Lou, Y., Osher, S., Xin, J.: Computational aspects of constrained \(L_1-L_2\) minimization for compressive sensing. In: Le Thi, H.A., Pham Dinh, T., Nguyen, N.T. (eds.) Modelling, Computation and Optimization in Information Systems and Management Sciences. AISC, vol. 359, pp. 169–180. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18161-5_15

    Chapter  Google Scholar 

  34. Lou, Y., Yin, P., He, Q., Xin, J.: Computing sparse representation in a highly coherent dictionary based on difference of \(L_1\) and \(L_2\). J. Sci. Comput. 64(1), 178–196 (2015)

    Article  MathSciNet  Google Scholar 

  35. Lustig, M., Donoho, D., Pauly, J.M.: Sparse mri: the application of compressed sensing for rapid mr imaging. Magn. Res. Med. An Off. J. Int. Soc. Magn. Res. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  36. Ma, R., Miao, J., Niu, L., Zhang, P.: Transformed \(\ell _1\) regularization for learning sparse deep neural networks. Neural Networks 119, 286–298 (2019)

    Article  Google Scholar 

  37. Qian, Y., Jia, S., Zhou, J., Robles-Kelly, A.: Hyperspectral unmixing via \(L_{1/2}\) sparsity-constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 49(11), 4282–4297 (2011)

    Article  Google Scholar 

  38. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  39. Scardapane, S., Comminiello, D., Hussain, A., Uncini, A.: Group sparse regularization for deep neural networks. Neurocomputing 241, 81–89 (2017)

    Article  Google Scholar 

  40. Shor, N.Z.: Minimization methods for non-differentiable functions, vol. 3. Springer Science & Business Media (2012)

    Google Scholar 

  41. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  42. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning. pp. 1139–1147 (2013)

    Google Scholar 

  43. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2818–2826 (2016)

    Google Scholar 

  44. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep neural networks. In: Advances in Neural Information Processing Systems. pp. 2074–2082 (2016)

    Google Scholar 

  45. Wen, W., Xu, C., Wu, C., Wang, Y., Chen, Y., Li, H.: Coordinating filters for faster deep neural networks. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 658–666 (2017)

    Google Scholar 

  46. Xu, Y., et al.: Trained rank pruning for efficient deep neural networks. arXiv preprint arXiv:1812.02402 (2018)

  47. Xu, Y., et al.: Trp: Trained rank pruning for efficient deep neural networks. arXiv preprint arXiv:2004.14566 (2020)

  48. Xu, Z., Chang, X., Xu, F., Zhang, H.: \({\ell _{1/2}}\) regularization: a thresholding representation theory and a fast solver. IEEE Trans. Neural Netw. Learn. Syst. 23(7), 1013–1027 (2012)

    Article  Google Scholar 

  49. Xu, Z., Guo, H., Wang, Y., Hai, Z.: Representative of \(L_{1/2}\) regularization among \(L_q (0 \le q \le 1)\) regularizations: an experimental study based on phase diagram. Acta Automatica Sinica 38(7), 1225–1228 (2012)

    MathSciNet  Google Scholar 

  50. Xu, Z., Zhang, H., Wang, Y., Chang, X., Liang, Y.: \(L_{1/2}\) regularization. Sci. China Inf. Sci. 53(6), 1159–1169 (2010)

    Article  MathSciNet  Google Scholar 

  51. Xue, F., Xin, J.: Learning sparse neural networks via \(\ell _0\) and t\(\ell _1\) by a relaxed variable splitting method with application to multi-scale curve classification. In: Le Thi, H.A., Le, H.M., Pham Dinh, T. (eds.) WCGO 2019. AISC, vol. 991, pp. 800–809. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-21803-4_80

    Chapter  Google Scholar 

  52. Yin, P., Lou, Y., He, Q., Xin, J.: Minimization of \(\ell _{1-2}\) for compressed sensing. SIAM J. Sci. Comput. 37(1), A536–A563 (2015)

    Article  MathSciNet  Google Scholar 

  53. Yin, P., Zhang, S., Lyu, J., Osher, S., Qi, Y., Xin, J.: Binaryrelax: a relaxation approach for training deep neural networks with quantized weights. SIAM J. Imag. Sci. 11(4), 2205–2223 (2018)

    Article  MathSciNet  Google Scholar 

  54. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for \(\ell _1\)-minimization with applications to compressed sensing. SIAM J. Imag. Sci. 1(1), 143–168 (2008)

    Article  Google Scholar 

  55. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. Royal Stat. Soc.: Series B (Stat. Methodol.) 68(1), 49–67 (2006)

    Article  MathSciNet  Google Scholar 

  56. Zhang, S., Xin, J.: Minimization of transformed \( l_1 \) penalty: closed form representation and iterative thresholding algorithms. Commun. Math. Sci. 15(2), 511–537 (2017)

    Article  Google Scholar 

  57. Zhang, S., Xin, J.: Minimization of transformed \(l_1\) penalty: theory, difference of convex function algorithm, and robust application in compressed sensing. Math. Program. 169(1), 307–336 (2018)

    Article  MathSciNet  Google Scholar 

  58. Zhang, S., Yin, P., Xin, J.: Transformed Schatten-1 iterative thresholding algorithms for low rank matrix completion. Commun. Math. Sci. 15(3), 839–862 (2017)

    Article  MathSciNet  Google Scholar 

  59. Zhu, C., Han, S., Mao, H., Dally, W.J.: Trained ternary quantization. arXiv preprint arXiv:1612.01064 (2016)

Download references

Acknowledgments

The work was partially supported by NSF grants IIS-1632935, DMS-1854434, DMS-1952644, and a Qualcomm Faculty Award. The authors thank Mingjie Sun for having the code for [31] available on GitHub.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Xin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bui, K., Park, F., Zhang, S., Qi, Y., Xin, J. (2020). Nonconvex Regularization for Network Slimming: Compressing CNNs Even More. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2020. Lecture Notes in Computer Science(), vol 12509. Springer, Cham. https://doi.org/10.1007/978-3-030-64556-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64556-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64555-7

  • Online ISBN: 978-3-030-64556-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics