Skip to main content

Speciation Processes in Triatominae

  • Chapter
  • First Online:
Triatominae - The Biology of Chagas Disease Vectors

Part of the book series: Entomology in Focus ((ENFO,volume 5))

Abstract

This chapter intends to familiarize the reader with the basic concepts regarding speciation in insects, through the description and exemplification of the three most common speciation modes described in the specialized literature on the subject: the allopatric, parapatric, and sympatric speciation modes.

We also argue that nowadays there is, perhaps, an excess of species concepts to choose from. Two of those have been used more often by the Triatominae research community: the biological species concept and the phylogenetic species concept. The idea first advanced by De Queiroz (Syst Biol 56(6):879–886, 2007) that the proposition of a single species concept that would unify all concepts available is not only desirable but also essential at this point. The issue of overconservative systematics is considered with emphasis on the paraphyly of Triatoma. The implications of phenotypic plasticity in traditional triatomine taxonomy are also addressed.

How long does it take for a new species of triatomine to be formed? Early proposals envisioned very short time intervals say, a few hundred years, for the process to be completed. Two well-studied examples are presented.

How do triatomines speciate? Vicariance and allopatric speciation seem to be the norm in Triatominae speciation. Three examples are discussed. Nonetheless, sympatric speciation has also been evoked to account for the generation of particular species within cryptic species complexes. Two examples are given.

Finally, a discussion toward the benefits of relying on integrative and evolutionarily sound taxonomy approaches is offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad-Franch F, Monteiro FA, Jaramillo ON, Gurgel-Gonçalves R, Dias FBS, Diotaiuti L (2009) Ecology, evolution, and the long-term surveillance of vector-borne Chagas disease: a multi-scale appraisal of the tribe Rhodniini (Triatominae). Acta Trop 110:159–177

    PubMed  Google Scholar 

  • Abad-Franch F, Ferraz G, Campos C, Palomeque FS, Grijalva MJ et al (2010) Modeling disease vector occurrence when detection is imperfect: infestation of Amazonian palm trees by triatomine bugs at three spatial scales. PLoS Negl Trop Dis 4(3):e620

    PubMed  PubMed Central  Google Scholar 

  • Abad-Franch F, Pavan MG, Jaramillo ON, Palomeque FS, Dale C, Chaverra D, Monteiro FA (2013) Rhodnius barretti, a new species of Triatominae (Hemiptera: Reduviidae) from western Amazonia. Mem Inst Oswaldo Cruz 108:92–99

    PubMed  PubMed Central  Google Scholar 

  • Abad-Franch F, Diotaiuti L, Gurgel-Gonçalves R, Gürtler RE (2014) On bugs and bias: improving Chagas disease control assessment. Mem Inst Oswaldo Cruz 109(1):125–130

    PubMed  Google Scholar 

  • Almeida CE, Oliveira HL, Correia N, Dornak LL, Gumiel M, Neiva VL, Harry M, Mendonça VJ, Costa J, Galvão C (2012) Dispersion capacity of Triatoma sherlocki, Triatoma juazeirensis and laboratory-bred hybrids. Acta Trop 122:71–79

    PubMed  Google Scholar 

  • Andersson L (1990) The driving force: species concepts and ecology. Taxon 39:375–382

    Google Scholar 

  • Antoine P-O, Marivaux L, Croft DA, Billet G, Ganerød M, Jaramillo C, Martin T, Orliac MJ, Tejada J, Altamirano AJ, Duranthon F, Fanjat G, Rousse S, Gismondi RS (2012) Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proc R Soc London B 279:1319–1326

    Google Scholar 

  • Bailey RI, Thomas CD, Butlin RK (2004) Premating barriers to gene exchange and their implications for the structure of a mosaic hybrid zone between Chorthippus brunneus and C. jacobsi (Orthoptera: Acrididae). J Evol Biol 17:108–119

    CAS  PubMed  Google Scholar 

  • Bargues MD, Klisiowicz DR, González-Candelas F, Ramsey JM, Monroy C, Ponce C, Salazar-Schettino PM, Panzera F, Abad-Franch F, Sousa OE, Schofield CJ, Dujardin JP, Guhl F, Mas-Coma S (2008) Phylogeography and genetic variation of Triatoma dimidiata, the main Chagas disease vector in Central America, and its position within the genus Triatoma. PLoS Negl Trop Dis 2:e233

    PubMed  PubMed Central  Google Scholar 

  • Barrett TV (1995) Species interfertility and crossing experiments in Triatomine systematics. In: Schofield CJ, Dujardin JP, Jurberg J (eds) Proceedings of the international workshop on population genetics and control of Triatominae. INDRE Press, Mexico, pp 72–77

    Google Scholar 

  • Barrett RDH, Rogers SM, Schluter D (2008) Natural selection on a major armor gene in threespine stickleback. Science 322:255–257. https://doi.org/10.1126/science.1159978

    Article  CAS  PubMed  Google Scholar 

  • Barron MG, Paupy C, Rahola N, Akone-Ella O, Ngangue MF, Theodel A, Wilson-Bahun TA, Pombi M, Kengne P, Costantini C, Simard F, Gonzalez J, Ayala D (2018) A new species in the Anopheles gambiae complex reveals new evolutionary relationships between vector and non-vector species. bioRxiv:460667. https://doi.org/10.1101/460667

  • Bridle JR, de la Torre J, Bella JL, Butlin RK, Gosalvez J (2002) Low levels of chromosomal differentiation between the grasshoppers Chorthippus brunneus and Chorthippus jacobsi (Orthoptera; Acrididae) in northern Spain. Genetica 114:121–127

    PubMed  Google Scholar 

  • Brito RN, Geraldo JA, Monteiro FA, Lazoski C, Souza RCM, Abad-Franch F (2019) Transcriptome-based molecular systematics: Rhodnius montenegrensis (Triatominae) and its position within the Rhodnius prolixus-Rhodnius robustus cryptic-species complex. Parasit Vectors 12(1):305. https://doi.org/10.1186/s13071-019-3558-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brower AVZ (1994) Rapid morphological radiation and convergence in the butterfly, Heliconius erato, inferred from patterns of mitochondrial DNA evolution. PNAS USA 91:6491–6495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burns KJ (1997) Molecular systematics of tanagers (Thraupinae): evolution and biogeography of a diverse radiation of Neotropical birds. Mol Phylogenet Evol 72:334–348

    Google Scholar 

  • Bush GL (1969) Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera: Tephritidae). Evolution 23:237–251

    PubMed  Google Scholar 

  • Bush GL, Diehl SR (1982) Host shifts, genetic models of sympatric speciation and the origin of parasitic insect species. In: Visser JH, Minks AK (eds) Insect and host plant. Pudoc, Wageningen, pp 297–305

    Google Scholar 

  • Bush GL, Butlin RK (2004) Sympatric speciation in insects. In: Dieckmann U, Doebeli M, Metz JAJ, Tautz D (eds) Adaptive speciation. Cambridge University Press, Cambridge, pp 229–248

    Google Scholar 

  • Butlin RK, Galindo J, Grahame JW (2008) Sympatric, parapatric or allopatric: the most important way to classify speciation? Phil Trans R Soc London B 363:2997–3007. https://doi.org/10.1098/rstb.2008.0076

    Article  Google Scholar 

  • Carcavallo RU, Jurberg J, Lent H, Noireau F, Galvão C (2000) Phylogeny of the Triatominae (Hemiptera: Reduviidae). Proposals for taxonomic arrangements. Entomol Vectores 7:1–99

    Google Scholar 

  • Claridge MF, den Hollander J, Morgan JC (1985) Variation in courtship signals and hybridization between geographically definable populations of the rice brown planthopper, Nilaparvata lugens (Stål). Biol J Linn Soc 24:35–49

    Google Scholar 

  • Cook OF (1906) Factors of species-formation. Science 23:506–507

    CAS  PubMed  Google Scholar 

  • Costa J, Freitas Sibajev MGR, Marcon Silva V, Pires MQ, Pacheco RS (1997) Isoenzymes detect variation in populations of Triatoma brasiliensis (Hemiptera: Reduviidae: Triatominae). Mem Inst Oswaldo Cruz 92:459–464

    CAS  PubMed  Google Scholar 

  • Costa J, Argolo AM, Felix M (2006) Redescription of Triatoma melanica Neiva & Lent, 1941, new status (Hemiptera: Reduviidae: Triatominae). Zootaxa 1385:47–52

    Google Scholar 

  • Costa J, Felix M (2007) Triatoma juazeirensis sp. nov. from the state of Bahia, northeastern Brazil (Hemiptera: Reduviidae: Triatominae). Mem Inst Oswaldo Cruz 102:87–90

    PubMed  Google Scholar 

  • Costa J, Peterson AT, Dujardin JP (2009) Morphological evidence suggests homoploid hybridization as a possible mode of speciation in the Triatominae (Hemiptera, Heteroptera, Reduviidae). Infect Genet Evol 9(2):263–270

    CAS  PubMed  Google Scholar 

  • Costa J, Correia NC, Neiva VL, Goncalves TCM, Felix M (2013) Revalidation and redescription of Triatoma brasiliensis macromelasoma Galvão, 1956 and an identification key for the Triatoma brasiliensis complex (Hemiptera: Reduviidae: Triatominae). Mem Inst Oswaldo Cruz 108:785–789

    PubMed  PubMed Central  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Cracraft J (1983) Species concepts and speciation analysis. Curr Ornithol 1:159–187

    Google Scholar 

  • Cracraft J (1989) Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and processes of differentiation. In: Otte D, Endler JA (eds) Speciation and its consequences. Sinauer Associates, Sunderland, MA, pp 28–59

    Google Scholar 

  • Dambroski HR, Linn C Jr, Berlocher SH, Forbes AA, Roelofs W, Feder JL (2005) The genetic basis for fruit odor discrimination in Rhagoletis flies and its significance for sympatric host shifts. Evolution 59:1953–1964

    CAS  PubMed  Google Scholar 

  • Davey J, Blaxter M (2011) RADSeq: next-generation population genetics. Briefs Funct Genomics 10(2):108

    Google Scholar 

  • de la Rúa NM, Bustamante DM, Menes M, Stevens L, Monroy C, Kilpatrick CW, Rizzo D, Klotz SA, Schmidt J, Axen HJ, Dorn PL (2014) Towards a phylogenetic approach to the composition of species complexes in the North and Central American Triatoma, vectors of Chagas disease. Infect Genet Evol 24:157–166

    PubMed  PubMed Central  Google Scholar 

  • de Paula AS, Diotaiuti L, Schofield CJ (2005) Testing the sister-group relationship of the Rhodniini and Triatomini (Insecta: Hemiptera: Reduviidae: Triatominae). Mol Phylogenet Evol 35:712–718

    PubMed  Google Scholar 

  • de Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56(6):879–886

    PubMed  Google Scholar 

  • Dias FBS, Bezerra CM, Machado EM, Casanova C, Diotaiuti L (2008) Ecological aspects of Rhodnius nasutus Stål, 1859 (Hemiptera: Reduviidae: Triatominae) in palms of the Chapada do Araripe in Ceará, Brazil. Mem Inst Oswaldo Cruz 103(8):824–830

    PubMed  Google Scholar 

  • Díaz S, Panzera F, Jaramillo-O N, Perez R, Fernandez R, Vallejo G, Saldana A, Calzada JE, Triana O, Gómez-Palacio A (2014) Genetic, cytogenetic and morphological trends in the evolution of the Rhodnius (Triatominae: Rhodniini) trans-Andean group. PLoS One 9(2):e87493. https://doi.org/10.1371/journal.pone.0087493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobzhansky T (1950) Mendelian populations and their evolution. Am Nat 84:401–418

    Google Scholar 

  • Dobzhansky T (1970) Genetics of the evolutionary process. Columbia University Press, New York

    Google Scholar 

  • Doellman MM, Egan SP, Ragland GJ, Meyers PJ, Hood GR, Powell THQ, Lazorchak P, Hahn DA, Berlocher SH, Nosil P, Feder JL (2019) Standing geographic variation in eclosion time and the genomics of host race formation in Rhagoletis pomonella fruit flies. Ecol Evol 9:393–409. https://doi.org/10.1002/ece3.4758

    Article  PubMed  Google Scholar 

  • Donoghue MJ (1985) A critique of the biological species concept and recommendations for a phylogenetic alternative. Bryologist 88:172–181

    Google Scholar 

  • Dorn PL, Calderón C, Melgar S, Moguel B, Solórzano E, Dumonteil E, Rodas A, de la Rúa N, Garnica R, Monroy C (2009) Two distinct Triatoma dimidiata (Latreille, 1811) taxa are found in sympatry in Guatemala and Mexico. PLoS Negl Trop Dis 3:e393

    PubMed  PubMed Central  Google Scholar 

  • Dorn PL, Justi SA, Dale C, Stevens L, Galvão C, Lima-Cordón R, Monroy C (2018) Description of Triatoma mopan sp. n. from a cave in Belize (Hemiptera, Reduviidae, Triatominae). ZooKeys 775:69–95. https://doi.org/10.3897/zookeys.775.22553

    Article  Google Scholar 

  • Dotson EM, Beard CB (2001) Sequence and organization of the mitochondrial genome of the Chagas disease vector, Triatoma dimidiata. Insect Mol Biol 10:205–225

    CAS  PubMed  Google Scholar 

  • Dujardin JP, Muñoz M, Chavez T, Ponce C, Moreno J, Schofield CJ (1998) The origin of Rhodnius prolixus in Central America. Med Vet Entomol 12:113–115

    CAS  PubMed  Google Scholar 

  • Dujardin JP, Chávez T, Moreno JM, Machane M, Noireau F, Schofield CJ (1999) Comparison of isoenzyme electrophoresis and morphometric analysis for phylogenetic reconstruction of the Rhodniini (Hemiptera: Reduviidae: Triatominae). J Med Entomol 36:653–659

    CAS  PubMed  Google Scholar 

  • Dujardin JP, Costa J, Bustamante D, Jaramillo N, Catalá S (2009) Deciphering morphology in Triatominae: the evolutionary signals. Acta Trop 110(2–3):101–111

    CAS  PubMed  Google Scholar 

  • Dujardin JP, Lam TX, Khoa PT, Schofield CJ (2015a) The rising importance of Triatoma rubrofasciata. Mem Inst Oswaldo Cruz 110:319–323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dujardin JP, Pham Thi K, Truong Xuan L, Panzera F, Pita S, Schofield CJ (2015b) Epidemiological status of kissing-bugs in South East Asia: a preliminary assessment. Acta Trop 151:142–149

    PubMed  Google Scholar 

  • Emelianov I, Simpson F, Narang P, Mallet J (2003) Host choice promotes reproductive isolation between host races of the larch budmoth Zeiraphera diniana. J Evol Biol 16:208–218

    CAS  PubMed  Google Scholar 

  • Emelianov I, Marec F, Mallet J (2004) Genomic evidence for divergence with gene flow in host races of the larch budmoth. Proc Biol Sci 271(1534):97–105. https://doi.org/10.1098/rspb.2003.2574

    Article  PubMed  PubMed Central  Google Scholar 

  • Erwin TL (1982) Tropical forests: their richness in Coleoptera and other arthropod species. Coleopt Bull 36:74–75

    Google Scholar 

  • Feder JF, Berlocher SH, Roethele JB, Dambroski H, Smith JJ, Perry WL, Gavrilovic V, Filchak KE, Rull J, Aluja M (2003) Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. PNAS USA 100:10314–10319. https://doi.org/10.1073/pnas.1730757100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filchak KE, Roethele JB, Feder JL (2000) Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature 407:739–742

    CAS  PubMed  Google Scholar 

  • Fitzpatrick BM, Fordyce JA, Gavrilets S (2009) Pattern, process and geographic modes of speciation. J Evol Biol 22:2342–2347

    CAS  PubMed  Google Scholar 

  • Fitzpatrick S, Feliciangeli MD, Sánchez-Martín MJ, Monteiro FA, Miles MA (2008) Molecular genetics reveal that silvatic Rhodnius prolixus do colonise rural houses. PLoS Negl Trop Dis 2:e210

    PubMed  PubMed Central  Google Scholar 

  • Flynn JJ, Wyss AR (1998) Recent advances in South American mammalian paleontology. Trends Ecol Evol 13(11):449–454

    CAS  PubMed  Google Scholar 

  • Galvão AB (1956) Triatoma brasiliensis macromelasoma n. subsp. (Reduviidae: Hemiptera). Rev Bras Mal D Trop 7:455–457

    Google Scholar 

  • Galvão C, Paula AS (2014) Sistemática e evolução dos vetores. In: Galvão C (ed) Vetores da doença de Chagas no Brasil. Sociedade Brasileira de Zoologia, Curitiba, pp 25–32

    Google Scholar 

  • Galvão C, Carcavallo RU, Rocha DS, Jurberg J (2003) A checklist of the current valid species of the subfamily Triatominae Jeannel, 1919 (Hemiptera, Reduviidae) and their geographical distribution, with nomenclatural and taxonomic notes. Zootaxa 202:1–36

    Google Scholar 

  • García BA, Moriyama EN, Powell JR (2001) Mitochondrial DNA sequences of triatomines (Hemiptera: Reduviidae): phylogenetic relationships. J Med Entomol 38:675–683

    PubMed  Google Scholar 

  • Glastad KM, Hunt BG, Yi SV, Goodisman MAD (2011) DNA methylation in insects: on the brink of the epigenomic era. Insect Mol Biol 20:553–565

    CAS  PubMed  Google Scholar 

  • Gómez-Palacio A, Jaramillo-O N, Caro-Riaño H, Díaz S, Monteiro FA, Pérez R, Panzera F, Triana O (2012) Morphometric and molecular evidence of intraspecific biogeographical differentiation of Rhodnius pallescens (Hemiptera: Reduviidae: Rhodniini) from Colombia and Panama. Infect Genet Evol 12:1975–1983

    PubMed  Google Scholar 

  • Gonçalves LO, Oliveira LM, D’Ávila Pessoa GC, Rosa ACL, Bustamante MG, Belisário CJ, Resende DM, Diotaiuti LG, Ruiz JC (2017) Insights from tissue-specific transcriptome sequencing analysis of Triatoma infestans. Mem Inst Oswaldo Cruz 112:456–457

    PubMed  PubMed Central  Google Scholar 

  • Gorla DE, Dujardin JP, Schofield CJ (1997) Biosystematics of old World Triatominae. Acta Trop 63:127–140

    CAS  PubMed  Google Scholar 

  • Grismer LL (1999) An evolutionary classification of reptiles on islands in the Gulf of California, Mexico. Herpetologica 55:446–469

    Google Scholar 

  • Grismer LL (2001) An evolutionary classification and checklist of amphibians and reptiles on the Pacific islands of Baja California, Mexico. Bull South Calif Acad Sci 100:12–23

    Google Scholar 

  • Guerra AL, Borsatto KC, Teixeira NPD, Madeira FF, de Oliveira J, da Rosa JA, Azeredo-Oliveira MTV, Alevi KCC (2019) Revisiting the homoploid hybrid speciation process of the Triatoma brasiliensis macromelasoma Galvão, 1956 (Hemiptera, Triatominae) using cytogenetic and molecular markers. Am J Trop Med Hyg 100(4):911–913. https://doi.org/10.4269/ajtmh.17-0813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurgel-Gonçalves R, Duarte MA, Ramalho ED, Palma ART, Romaña ED, Cuba CA (2004) Spatial distribution of Triatominae populations (Hemiptera: Reduviidae) in Mauritia flexuosa palm trees in Federal District of Brazil. Rev Soc Bras Med Trop 37(3):241–247

    PubMed  Google Scholar 

  • Haffer J (1969) Speciation in Amazonian forest birds. Science 165:131–137

    CAS  PubMed  Google Scholar 

  • Hammond PM (1992) Species inventory. In: Groombridge B (ed) Global biodiversity, status of the earth’s living resources. WCMC/Chapman and Hall, London, pp 17–39

    Google Scholar 

  • Harry M (1993a) Isozymic data question the specific status of some blood-sucking bugs of the genus Rhodnius, vectors of Chagas disease. Trans R Soc Trop Med Hyg 87:492–493

    CAS  PubMed  Google Scholar 

  • Harry M (1993b) Use of the median process of the pygophore in the identification of Rhodnius nasutus, R. neglectus, R. prolixus and R. robustus (Hemiptera: Reduviidae). Ann Trop Med Parasitol 87:277–282

    CAS  PubMed  Google Scholar 

  • Harry M (1994) Morphometric variability in the Chagas disease vector Rhodnius prolixus. Jpn J Genet 69:233–250

    CAS  PubMed  Google Scholar 

  • Harry M, Galíndez I, Cariou ML (1992) Isozyme variability and differentiation between Rhodnius prolixus, R. robustus and R. pictipes, vectors of Chagas disease in Venezuela. Med Vet Entomol 6:37–43

    CAS  PubMed  Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana

    Google Scholar 

  • Hernández ML, Abrahan LB, Dujardin JP, Gorla DE, Catalá SS (2011) Phenotypic variability and population structure of peridomestic Triatoma infestans in rural areas of the arid Chaco (Western Argentina): spatial influence of macro- and microhabitats. Vector-Borne Zoonotic Dis 11(5):503–513. https://doi.org/10.1089/vbz.2009.0253

    Article  PubMed  Google Scholar 

  • Hernandez-Castro LE, Paterno M, Villacís AG, Andersson B, Costales JA, De Noia M, Ocaña-Mayorga S, Yumiseva CA, Grijalva MJ, Llewellyn MS (2017) 2b-RAD genotyping for population genomic studies of Chagas disease vectors: Rhodnius ecuadoriensis in Ecuador. PLoS Negl Trop Dis 11(7):e0005710. https://doi.org/10.1371/journal.pntd.0005710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard DJ, Gregory PG, Chu J, Cain ML (1998) Conspecific sperm precedence is an effective barrier to hybridization between closely related species. Evolution 52:511–516

    PubMed  Google Scholar 

  • Hwang WS, Weirauch C (2012) Evolutionary history of assassin bugs (Insecta: Hemiptera: Reduviidae): insights from divergence dating and ancestral state reconstruction. PLoS One 7:e45523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hypša V, Tietz DF, Zrzavý J, Rego RO, Galvão C, Jurberg J (2002) Phylogeny and biogeography of Triatominae (Hemiptera: Reduviidae): molecular evidence of a New World origin of the Asiatic clade. Mol Phylogenet Evol 23:447–457

    PubMed  Google Scholar 

  • Ibarra-Cerdeña CN, Zaldívar-Riverón A, Peterson AT, Sánchez-Cordero V, Ramsey JM (2014) Phylogeny and niche conservatism in North and Central American triatomine bugs (Hemiptera: Reduviidae: Triatominae), vectors of Chagas’ disease. PLoS Negl Trop Dis 8:e3266

    PubMed  PubMed Central  Google Scholar 

  • Jiggins CD (2006) Sympatric speciation: why the controversy? Curr Biol 16:333–334. https://doi.org/10.1016/j.cub.2006.03.077

    Article  CAS  Google Scholar 

  • Justi SA, Galvão C, Schrago CG (2016) Geological changes of the Americas and their influence on the diversification of the Neotropical kissing bugs (Hemiptera: Reduviidae: Triatominae). PLoS Negl Trop Dis 10:e0004527

    PubMed  PubMed Central  Google Scholar 

  • Justi SA, Russo CA, Mallet JR, Obara MT, Galvão C (2014) Molecular phylogeny of Triatomini (Hemiptera: Reduviidae: Triatominae). Parasit Vectors 7:149

    PubMed  PubMed Central  Google Scholar 

  • Kai W, Nomura K, Fujiwara A, Nakamura Y, Yasuike M, Ojima N, Masaoka T, Ozaki A, Kazeto Y, Gen K, Nagao J, Tanaka H, Kobayashi T, Ototake M (2014) A ddRAD-based genetic map and its integration with the genome assembly of Japanese eel (Anguilla japonica) provides insights into genome evolution after the teleost-specific genome duplication. BMC Genomics 15:233. https://doi.org/10.1186/1471-2164-15-233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato H, Jochim RC, Gómez EA, Sakoda R, Iwata H, Valenzuela JG, Hashiguchi Y (2010) A repertoire of the dominant transcripts from the salivary glands of the blood-sucking bug, Triatoma dimidiata, a vector of Chagas disease. Infect Genet Evol 10:184–191

    CAS  PubMed  Google Scholar 

  • Lent H, Wygodzinsky P (1979) Revision of the Triatominae (Hemiptera, Reduviidae) and their significance as vectors of Chagas disease. Bull Am Mus Nat Hist 163:125–520

    Google Scholar 

  • Lima AF, Jeraldo VL, Silveira MS, Madi RR, Santana TB et al (2012) Triatomines in dwellings and outbuildings in an endemic area of Chagas disease in northeastern Brazil. Rev Soc Bras Med Trop 45(6):701–706

    PubMed  Google Scholar 

  • Lima MM, Sarquis O (2008) Is Rhodnius nasutus (Hemiptera; Reduviidae) changing its habitat as a consequence of human activity? Parasitol Res 102(4):797–800

    CAS  PubMed  Google Scholar 

  • Lima-Cordón RA, Monroy MC, Stevens L, Rodas A, Rodas GA, Dorn PL, Justi SA (2019) Description of Triatoma huehuetenanguensis sp. n., a potential Chagas disease vector (Hemiptera, Reduviidae, Triatominae). ZooKeys 820:51–70. https://doi.org/10.3897/zookeys.820.27258

    Article  Google Scholar 

  • Lukhtanov VA, Shapoval NA, Anokhin BA, Saifitdinova AF, Kuznetsova VG (2015) Homoploid hybrid speciation and genome evolution via chromosome sorting. Proc R Soc B 282:20150157. https://doi.org/10.1098/rspb.2015.0157

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyman DF, Monteiro FA, Escalante AA, Cordón-Rosales C, Wesson DM, Dujardin JP, Beard CB (1999) Mitochondrial DNA sequence variation among Triatomine vectors of Chagas disease. Am J Trop Med Hyg 60:377–386

    CAS  PubMed  Google Scholar 

  • Mallet J (1995) A species definition for the modern synthesis. Trend Ecol Evol 10:294–304

    CAS  Google Scholar 

  • Marchant A, Mougel F, Almeida C, Jacquin-Joly E, Costa J, Harry M (2015) De novo transcriptome assembly for a non-model species, the blood-sucking bug Triatoma brasiliensis, a vector of Chagas disease. Genetica 143:225–239

    CAS  PubMed  Google Scholar 

  • Marcilla A, Bargues MD, Abad-Franch F, Panzera F, Noireau F, Galvão C, Jurberg J, Miles MA, Dujardin JP, Mas-Coma S (2002) Nuclear rDNA ITS-2 sequences reveal polyphyly of Panstrongylus species (Hemiptera: Reduviidae: Triatominae), vectors of Trypanosoma cruzi. Infect Genet Evol 1:225–235

    CAS  PubMed  Google Scholar 

  • Marcilla A, Bargues MD, Ramsey JM, Magallón-Gastélum E, Salazar-Schettino PM, Abad-Franch F, Dujardin JP, Schofield CJ, Mas-Coma S (2001) The ITS-2 of the nuclear rDNA as a molecular marker for populations, species, and phylogenetic relationships in Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Mol Phylogenet Evol 18:136–142

    CAS  PubMed  Google Scholar 

  • Masters JC, Rayner RJ, McKay IJ, Potts AD, Nails D, Ferguson JW, Weissenbacher BK, Allsopp M, Anderson ML (1987) The concept of species: recognition versus isolation. S Afr J Sci 83:534–537

    Google Scholar 

  • Mayden RL (1997) A hierarchy of species concepts: the denouement in the saga of the species problem. In: Claridge MF, Dawah HA, Wilson MR (eds) Species: the units of diversity. Chapman and Hall, London, pp 381–423

    Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. The Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Meier R, Willmann R (2000) The Hennigian species concept. In: Wheeler QD, Meier R (eds) Species concepts and phylogenetic theory. Columbia University Press, New York, pp 30–43

    Google Scholar 

  • Mesquita RD, Vionette-Amaral RJ, Lowenbergerd C, Rivera-Pomar R, Monteiro FA, Minx P, Spieth J, Carvalho AB, Panzera F, Lawson D, Torres AQ, Ribeiro JMC, Sorgine MHF, Waterhouse RM, Montague A-FF, Alves-Bezerra M, Amaral LR, Araujo HM, Araujo RN, Aravindu LMJ, Atella GC, Azambuja P, Berni M, Bittencourt-Cunha PR, Braz GRC, Calderón-Fernández G, Carareto CMA, Christensen MB, Costa IR, Costa SG, Dansa M, Daumas-Filho CRO, De-Paula IF, Dias FA, Dimopoulos G, Emrich SJ, Esponda-Behrens N, Fampa P, Fernandez-Medina RD, Fonseca RN, Fontenele M, Fronick C, Fulton LA, Gandara AC, Garcia ES, Genta FA, Giraldo-Calderón GI, Gomes B, Gondim KC, Granzotto A, Guarneri AA, Guigóf R, Harry M, Hughes DST, Jablonka W, Jacquin-Joly E, Juárez MP, Koerich LB, Langek AB, Latorre-Estivalis JM, Lavore A, Lawrence GG, Lazoski C, Lazzari CR, Lopes RR, Lorenzo MG, Lugon MD, Majerowicz D, Marcet PL, Mariotti M, Masuda H, Megy K, Melo ACA, Missirlis F, Mota T, Noriega FG, Nouzova M, Nunes RD, Oliveira RLL, Oliveira-Silveira G, Ons S, Orchard I, Pagola L, Paiva-Silva GO, Pascual A, Pavan MG, Pedrini N, Peixoto AA, Pereira MH, Pike A, Polycarpo C, Prosdocimi F, Ribeiro-Rodrigues R, Robertson HM, Salerno AP, Salmon D, Santesmasses D, Schama R, Seabra-Junior ES, Silva-Cardoso L, Silva-Neto MAC, Souza-Gomes M, Sterkel M, Taracena ML, Tojo M, Tu ZJ, Tubio JMC, Ursic-Bedoya R, Venancio TM, Walter-Nuno AB, Wilson D, Warren WC, Wilson RK, Huebner E, Dotson EM, Oliveira PL (2015) Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. PNAS USA 112:14936–14941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer JR, Dobias DT, Medina SJ, Servilio L, Gupta A, Lenski RE (2016) Ecological speciation of bacteriophage lambda in allopatry and sympatry. Science 354(6317):1301–1304

    CAS  PubMed  Google Scholar 

  • Mishler BD (1985) The morphological, developmental, and phylogenetic basis of species concepts in bryophytes. Bryologist 88:207–214

    Google Scholar 

  • Monteiro FA, Escalante AA, Beard CB (2001) Molecular tools and triatomine systematics: a public health perspective. Trends Parasitol 17:344–347

    CAS  PubMed  Google Scholar 

  • Monteiro FA, Barrett TV, Fitzpatrick S, Cordón-Rosales C, Feliciangeli D, Beard CB (2003) Molecular phylogeography of the Amazonian Chagas disease vectors Rhodnius prolixus and R. robustus. Mol Ecol 12:997–1006

    CAS  PubMed  Google Scholar 

  • Monteiro FA, Donnelly MJ, Beard CB, Costa J (2004) Nested clade and phylogeographic analyses of the Chagas disease vector Triatoma brasiliensis in Northeast Brazil. Mol Phylogenet Evol 32:46–56

    PubMed  Google Scholar 

  • Monteiro FA, Peretolchina T, Lazoski C, Harris K, Dotson EM, Abad-Franch F, Tamayo E, Pennington PM, Monroy C, Cordón-Rosales C, Salazar-Schettino PM, Gómez-Palacio AM, Grijalva MJ, Beard CB, Marcet PL (2013) Phylogeographic pattern and extensive mitochondrial DNA divergence disclose a species complex within the Chagas disease vector Triatoma dimidiata. PLoS One 8:e70974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monteiro FA, Weirauch C, Felix M, Lazoski C, Abad-Franch F (2018) Evolution, systematics, and biogeography of the Triatominae, vectors of Chagas disease. Adv Parasitol 99:265–344. https://doi.org/10.1016/bs.apar.2017.12.002

    Article  PubMed  Google Scholar 

  • Moreno J, Galvão C, Jurberg J (1999) Rhodnius colombiensis sp. n da Colômbia, com quadros comparativos entre estruturas fálicas do gênero Rhodnius Stal, 1859 (Hemiptera, Reduviidae, Triatominae). Entomol Vectores 6:601–617

    Google Scholar 

  • Mullen SP, Shaw KL (2014) Insect speciation rules: unifying concepts in speciation research. Annu Rev Entomol 59:339–361

    CAS  PubMed  Google Scholar 

  • Murren CJ, Auld JR, Callahan H, Ghalambor CK, Handelsman CA, Heskel MA, Kingsolver JG, Maclean HJ, Masel J, Maughan H, Pfennig DW, Relyea RA, Seiter S, Snell-Rood E, Steiner UK, Schlichting CD (2015) Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115(4):293–301. https://doi.org/10.1038/hdy.2015.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nattero J, Malerba R, Rodríguez CS, Crocco L (2013) Phenotypic plasticity in response to food source in Triatoma infestans (Klug, 1834) (Hemiptera, Reduviidae: Triatominae). Infect Genet Evol 19:38–44

    PubMed  Google Scholar 

  • Nelson G, Platnick NI (1981) Systematics and biogeography. Columbia University Press, New York

    Google Scholar 

  • Nixon KC, Wheeler QD (1990) An amplification of the phylogenetic species concept. Cladistics 6:211–223

    Google Scholar 

  • Nosil P (2007) Divergent host-plant adaptation and reproductive isolation between ecotypes of Timema cristinae. Am Nat 169:151–162

    PubMed  Google Scholar 

  • Nosil P, Flaxman SM (2010) Conditions for mutation-order speciation. Proc R Soc B 278:399–407. https://doi.org/10.1098/rspb.2010.1215

    Article  PubMed  PubMed Central  Google Scholar 

  • Nosil P, Harmon LJ, Seehausen O (2009) Ecological explanations for (incomplete) speciation. Trends Ecol Evol 24:145–156

    PubMed  Google Scholar 

  • Nosil P, Parchman TL, Feder JL, Gompert Z (2012) Do highly divergent loci reside in gene regions affecting reproductive isolation? A test using next-generation sequence data in Timema stick insects. BMC Evol Biol 12:164

    PubMed  PubMed Central  Google Scholar 

  • Orantes LC, Monroy C, Dorn PL, Stevens L, Rizzo DM, Morrissey L, Hanley JP, Rodas AG, Richards B, Wallin KF, Cahan SH (2018) Uncovering vector, parasite, blood meal and microbiome patterns from mixed-DNA specimens of the Chagas disease vector Triatoma dimidiata. PLoS Negl Trop Dis 12(10):e0006730. https://doi.org/10.1371/journal.pntd.0006730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orr HA (1995) The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics 139:1805–1813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panzera F, Ferrandis I, Ramsey JM, Ordóñez R, Salazar-Schettino PM, Cabrera M, Monroy MC, Bargues MD, Mas-Coma S, O’Connor JE, Angulo VM, Jaramillo N, Cordón-Rosales C, Gómez D, Pérez R (2006) Chromosomal variation and genome size support existence of cryptic species of Triatoma dimidiata with different epidemiological importance as Chagas disease vectors. Tropical Med Int Health 11:1092–1103

    CAS  Google Scholar 

  • Panzera F, Ferrandis I, Ramsey J, Salazar-Schettino PM, Cabrera M, Monroy C, Bargues MD, Mas-Coma S, O’Connor JE, Angulo VM, Jaramillo N, Pérez R (2007) Genome size determination in Chagas disease transmitting bugs (Hemiptera-Triatominae) by flow cytometry. Am J Trop Med Hyg 76:516–521

    CAS  PubMed  Google Scholar 

  • Paterson HEH (1985) The recognition concept of species. In: Vrba ES (ed) Species and speciation. Transvaal Museum, Pretoria, pp 21–29

    Google Scholar 

  • Patterson JS, Gaunt MW (2010) Phylogenetic multi-locus codon models and molecular clocks reveal the monophyly of haematophagous reduviid bugs and their evolution at the formation of South America. Mol Phylogenet Evol 56:608–621

    PubMed  Google Scholar 

  • Patterson JS, Schofield CJ, Dujardin JP, Miles MA (2001) Population morphometric analysis of the tropicopolitan bug Triatoma rubrofasciata and relationships with Old World species of Triatoma: evidence of New World ancestry. Med Vet Entomol 15:443–451

    CAS  PubMed  Google Scholar 

  • Pavan MG, Monteiro FA (2007) A multiplex PCR assay that separates Rhodnius prolixus from members of the Rhodnius robustus cryptic species complex (Hemiptera: Reduviidae). Tropical Med Int Health 12:751–758

    CAS  Google Scholar 

  • Pavan MG, Mesquita RD, Lawrence GG, Lazoski C, Dotson EM, Abubucker S, Mitreva M, Randall-Maher J, Monteiro FA (2013) A nuclear single-nucleotide polymorphism (SNP) potentially useful for the separation of Rhodnius prolixus from members of the Rhodnius robustus cryptic species complex (Hemiptera: Reduviidae). Infect Genet Evol 14:426–433

    CAS  PubMed  Google Scholar 

  • Pavan MG, Rivas GBS, Dias FBS, Gurgel-Gonçalves R (2015) Looks can be deceiving: cryptic species and phenotypic variation in Rhodnius spp., Chagas disease vectors. In: Pontarotti P (ed) Evolutionary biology: biodiversification from genotype to phenotype. Springer, Cham, pp 345–372

    Google Scholar 

  • Pavan MG, Correa-Antônio J, Peixoto AA, Monteiro FA, Rivas GBS (2016) Rhodnius prolixus and R. robustus (Hemiptera: Reduviidae) nymphs show different locomotor patterns on an automated recording system. Parasit Vectors 9:239

    PubMed  PubMed Central  Google Scholar 

  • Pfeiler E, Bitler BG, Ramsey JM, Palacios-Cardiel C, Markow TA (2006) Genetic variation, population structure, and phylogenetic relationships of Triatoma rubida and T. recurva (Hemiptera: Reduviidae: Triatominae) from the Sonoran Desert, insect vectors of the Chagas’ disease parasite Trypanosoma cruzi. Mol Phylogenet Evol 41:209–221

    CAS  PubMed  Google Scholar 

  • Pita S, Lorite P, Nattero J, Galvão C, Alevi KC, Teves SC, Azeredo-Oliveira MT, Panzera F (2016) New arrangements on several species subcomplexes of Triatoma genus based on the chromosomal position of ribosomal genes (Hemiptera - Triatominae). Infect Genet Evol 43:225–231

    PubMed  Google Scholar 

  • Pita S, Panzera F, Vela J, Mora P, Palomeque T, Lorite P (2017) Complete mitochondrial genome of Triatoma infestans (Hemiptera, Reduviidae, Triatominae), main vector of Chagas disease. Infect Genet Evol 54:158–163

    CAS  PubMed  Google Scholar 

  • Poux C, Chevret P, Huchon D, de Jong WW, Douzery EJ (2006) Arrival and diversification of caviomorph rodents and platyrrhine primates in South America. Syst Biol 55(2):228–244

    PubMed  Google Scholar 

  • Ribeiro JM, Genta FA, Sorgine MH, Logullo R, Mesquita RD, Paiva-Silva GO, Majerowicz D, Medeiros M, Koerich L, Terra WR, Ferreira C, Pimentel AC, Bisch PM, Leite DC, Diniz MM, Junior JL, Silva ML, Araujo RN, Gandara AC, Brosson S, Salmon D, Bousbata S, González-Caballero N, Silber AM, Alves-Bezerra M, Gondim KC, Silva-Neto MA, Atella GC, Araujo H, Dias FA, Polycarpo C, Vionette-Amaral RJ, Fampa P, Melo AC, Tanaka AS, Balczun C, Oliveira JH, Gonçalves RL, Lazoski C, Rivera-Pomar R, Diambra L, Schaub GA, Garcia ES, Azambuja P, Braz GR, Oliveira PL (2014) An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. PLoS Negl Trop Dis 8:e2594

    PubMed  PubMed Central  Google Scholar 

  • Richards CL, Bossdorf O, Pigliucci M (2010) What role does heritable epigenetic variation play in phenotypic evolution? Bioscience 60:232–237

    Google Scholar 

  • Ridley M (1989) The cladistic solution to the species problem. Biol Philos 4:1–16

    Google Scholar 

  • Rosen DE (1979) Fishes from the uplands and intermontane basins of Guatemala: revisionary studies and comparative geography. Bull Am Mus Nat Hist 162:267–376

    Google Scholar 

  • Ryckman RE (1962) Biosystematics and hosts of the Triatoma protracta complex in North America (Hemiptera: Reduviidae) (Rodentia: Cricetidae). Univ Calif Publ Entomol 27:93–240

    Google Scholar 

  • Ryckman RE (1967) Six new populations of Triatominae from Western North America (Hemiptera: Reduviidae). Bull Pan-American Res Inst 1:1–3

    Google Scholar 

  • Sandoval CM, Blanco EEN, Marin RG, Mendez DAJ, Rodríguez NO, Otálora-Luna F, Aldana EJ (2015) Morphometric analysis of the host effect on phenotypical variation of Belminus ferroae (Hemiptera: Triatominae). Psyche 2015:613614. https://doi.org/10.1155/2015/613614

    Article  Google Scholar 

  • Sarquis O, Borges-Pereira J, Mac Cord JR, Gomes TF, Cabello PH, Lima MM (2004) Epidemiology of Chagas disease in Jaguaruana, Ceará, Brazil I: presence of triatomines and index of Trypanosoma cruzi infection in four localities of a rural area. Mem Inst Oswaldo Cruz 99(3):263–270

    PubMed  Google Scholar 

  • Schachter-Broide J, Dujardin JP, Kitron U, Gürtler RE (2004) Spatial structuring of Triatoma infestans (Hemiptera, Reduviidae) populations from northwestern Argentina using wing geometric morphometry. J Med Entomol 41:643–649

    PubMed  Google Scholar 

  • Schofield CJ (1988) Biosystematics of the Triatominae. In: Sevice MW (ed) Biosystematics of haematophagous insects, systematics association, special volume 37. Clarendon Press, Oxford, pp 284–312

    Google Scholar 

  • Schofield CJ, Dujardin JP (1999) Theories on the evolution of Rhodnius. Actual Biol 21:183–197

    Google Scholar 

  • Schofield CJ, Galvão C (2009) Classification, evolution and species groups within the Triatominae. Acta Trop 110:88–100

    CAS  PubMed  Google Scholar 

  • Simpson GG (1951) The species concept. Evolution 5:285–298

    Google Scholar 

  • Stothard JR, Yamamoto Y, Cherchi A, García AL, Valente SAS, Schofield CJ, Miles MA (1998) A preliminary survey of mitochondrial sequence variation within triatomine bugs (Hemiptera: Reduviidae) using polymerase chain reaction-based single strand conformational polymorphism (SSCP) analysis and direct sequencing. Bull Entomol Res 88:553–560

    CAS  Google Scholar 

  • Tang SW, Presgraves DC (2009) Evolution of the Drosophila nuclear pore complex results in multiple hybrid incompatibilities. Science 323:779–782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Templeton AR (1989) The meaning of species and speciation: a genetic perspective. In: Otte D, Endler JA (eds) Speciation and its consequences. Sinauer Associates, Sunderland, pp 3–27

    Google Scholar 

  • Templeton AR (1998) Species and speciation: geography, population structure, ecology, and gene trees. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, New York, pp 32–43

    Google Scholar 

  • Traverso L, Sierra I, Sterkel M, Francini F, Ons S (2016) Neuropeptidomics in Triatoma infestans. Comparative transcriptomic analysis among triatomines. J Physiol Paris 3:83–98

    Google Scholar 

  • Turelli M, Barton NH, Coyne JA (2001) Theory and speciation. Trends Ecol Evol 16:330–343

    CAS  PubMed  Google Scholar 

  • Usinger RL (1944) The Triatominae of North and Central America and the West Indies and their public health significance. US Publ Health Bull 288:1–83

    Google Scholar 

  • Usinger RL, Wygodzinsky P, Ryckman RE (1966) The biosystematics of Triatominae. Annu Rev Entomol 11:309–330

    CAS  PubMed  Google Scholar 

  • Valença-Barbosa C, Lima MM, Sarquis O, Bezerra CM, Abad-Franch F (2014) A common Caatinga cactus, Pilosocereus gounellei, is an important ecotope of wild Triatoma brasiliensis populations in the Jaguaribe valley of northeastern Brazil. Am J Trop Med Hyg 90(6):1059–1062

    PubMed  PubMed Central  Google Scholar 

  • Van Valen L (1976) Ecological species, multispecies, and oaks. Taxon 25:233–239

    Google Scholar 

  • Wiens JJ, Tiu J (2012) Highly incomplete taxa can rescue phylogenetic analyses from the negative impacts of limited taxon sampling. PLoS One 7:e42925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley EO (1978) The evolutionary species concept reconsidered. Syst Zool 27:17–26

    Google Scholar 

  • Wilkins JS (2011) Philosophically speaking, how many species concepts are there? Zootaxa 2765:58–60

    Google Scholar 

  • Xie X, Rull J, Michel AP, Velez S, Forbes AA, Lobo NF, Aluja M, Feder JL (2007) Hawthorn-infesting populations of Rhagoletis pomonella in Mexico and speciation mode plurality. Evolution 61:1091–1105

    PubMed  Google Scholar 

  • Zhang Y-Y, Fisher M, Colot V, Bossdorf O (2013) Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol 197:314–332

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando A. Monteiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pavan, M.G., Lazoski, C., Monteiro, F.A. (2021). Speciation Processes in Triatominae. In: Guarneri, A., Lorenzo, M. (eds) Triatominae - The Biology of Chagas Disease Vectors . Entomology in Focus, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-64548-9_3

Download citation

Publish with us

Policies and ethics