Skip to main content

Micromechanics of Pile Cyclic Response in Sand

Part of the Lecture Notes in Civil Engineering book series (LNCE,volume 126)


A 3D discrete element model is used to investigate the axial cyclic response of a small-scale displacement piles installed in Fontainebleau sand. Calibration chamber experimental results from literature are used to validate the pile penetration phase of the DEM model which is then employed to simulate stress controlled vertical cyclic loading. The crushable DEM particle model is calibrated using high pressure element test data for the same sand. The model predicts the experimental stress measurements surrounding the jacked pile in both penetrating and unloaded conditions. The DEM model is used to assess micromechanical features hard to detect using experimental and continuum numerical methods. Grain crushing within the soil is observed to occur only below the cone during pile penetration. The analysis of particle stresses and force chains highlight how arching develops around the shaft. These arching effects create a sort of shield around the shaft causing the radial stresses to be lower. After pile installation is completed, a numerical parametric study of stress controlled cyclic axial loading of the pile is performed. The results show that depending on the magnitude of the cyclic load stable or metastable pile cyclic response is attained. The cyclic load amplitude also influences in different ways both stress and density profiles around the pile. These results may serve as a step forward to the understanding of installation effects on axial cyclic performance of jacked piles in sand.


  • Piles
  • Cyclic loading
  • Setup
  • Crushing
  • DEM
  • Sands

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-64518-2_62
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-64518-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Hardcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  • Arshad, M.I., Tehrani, F.S., Prezzi, M., Salgado, R.: Experimental study of cone penetration in silica sand using digital image correlation. Géotechnique 64, 551–569 (2014)

    CrossRef  Google Scholar 

  • Bolton, M.D., Gui, M.W., Garnier, J., Corte, J.F., Bagge, G., Laue, J., Renzi, R.: Centrifuge cone penetration tests in sand. Géotechnique 49, 543–552 (1999)

    CrossRef  Google Scholar 

  • Ciantia, M.O., Arroyo, M., Calvetti, F., Gens, A.: An approach to enhance efficiency of DEM modelling of soils with crushable grains. Géotechnique 65, 91–110 (2015)

    CrossRef  Google Scholar 

  • Ciantia, M.O., Arroyo, M., Butlanska, J., Gens, A.: DEM modelling of cone penetration tests in a double-porosity crushable granular material. Comput. Geotech. 73, 109–127 (2016)

    CrossRef  Google Scholar 

  • Ciantia, M.O., Boschi, K., Shire, T., Emam, S.: Numerical techniques for fast generation of large discrete-element models. Proc. Inst. Civ. Eng. Eng. Comput. Mech. 171(4), 147–161 (2018)

    Google Scholar 

  • Ciantia, M.O., O’Sullivan, C., Jardine, R.J.: Pile penetration in crushable soils: Insights from micromechanical modelling. In: Proceedings of the XVII ECSMGE-2019. Reykjavík, pp. 298–317 (2019a)

    Google Scholar 

  • Ciantia, M.O., Arroyo, M., O’Sullivan, C., Gens, A., Liu, T.: Grading evolution and critical state in a discrete numerical model of Fontainebleau sand. Géotechnique 69(1), 1–15 (2019b).

  • Itasca, C.G.I.: Particle Flow Code, V. 5.0 (2016)

    Google Scholar 

  • Jardine, R.J., Chow, F.C., Overy, R.F., Standing, J.R.: ICP Design Methods for Driven Piles in Sands and Clays, p. 105. Thomas Telford Ltd, London p (2005)

    CrossRef  Google Scholar 

  • Jardine, R.J., Standing, J.R.: Field axial cyclic loading experiments on piles driven in sand. Soils Found. 52(4), 723–736 (2012)

    CrossRef  Google Scholar 

  • Jardine, R.J.: Geotechnics, energy and climate change. In: 56th Rankine Lecture, Géotechnique (2019).

  • Lehane, B.M., Schneider, J.A., Xu, X.: A review of design methods for offshore driven piles in siliceous sand, p. 5358. UWA Rep, GEO (2005)

    Google Scholar 

  • Li, Z., Haigh, S.K., Bolton, M.D.: The behavior of a single pile under cyclic axial loads. In: Deep Foundations and Geotechnical In Situ Testing. Proceedings (2010).

  • Russell, A.R., Muir Wood, D., Kikumoto, M.: Crushing of particles in idealised granular assemblies. J. Mech. Phys. Solids 57, 1293–1313 (2009)

    CrossRef  Google Scholar 

  • Tsuha, C.H.C., Foray, P.Y., Jardine, R.J., Yang, Z.X., Silva, M., Rimoy, S.: Behaviour of displacement piles in sand under cyclic axial loading. Soils Found. 52(3), 393–410 (2012).

    CrossRef  Google Scholar 

  • Yang, Z.X., Jardine, R.J., Zhu, B.T., Foray, P., Tsuha, C.H.C.: Sand grain crushing and interface shearing during displacement pile installation in sand. Géotechnique 60, 469–482 (2010)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Matteo Oryem Ciantia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Ciantia, M.O. (2021). Micromechanics of Pile Cyclic Response in Sand. In: Barla, M., Di Donna, A., Sterpi, D. (eds) Challenges and Innovations in Geomechanics. IACMAG 2021. Lecture Notes in Civil Engineering, vol 126. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64517-5

  • Online ISBN: 978-3-030-64518-2

  • eBook Packages: EngineeringEngineering (R0)