Skip to main content

GM Technology and Fiber Traits

  • Chapter
  • First Online:
Cotton Precision Breeding

Abstract

Cotton fiber quality is a complex trait which is influenced by environmental stresses. Breeding alone is notĀ found up to the mark to get the desired fiber quality. Combination of approaches to bring all fiber quality traits through gene pyramiding can only be attained by genetic modification followed by breeding. Genetic modification is increasingly being used in biotechnology. Improved cotton fiber quality is always preferred by the textile industry. Researchers are working hard to reveal genes involved in controlling various fiber characteristics; resultantly several genes have been identified. Studies determined the effects of variation in expression of fiber-related genes transcription factors, and genes expressing phytohormones can have its impact on altering the fiber quality. Introduction of single gene cannot impart the desired results, but combination of fiber-related genes and transcription factor controlling gene expression can be useful strategy for fiber improvement. This chapter highlights the structure and composition of fiber at various developmental stages and also the impact of transgene in improving fiber traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abidi N, Hequet E, Cabrales L (2010) Changes in sugar composition and cellulose content during the secondary cell wall biogenesis in cotton fibers. Cellulose 17(1):153ā€“160

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ahmed M, Shahid AA, Din SU, Akhtar S, Ahad A, Rao AQ et al (2018) An overview of genetic and hormonal control of cotton fiber development. Pak J Bot 50(1):433ā€“443

    CASĀ  Google ScholarĀ 

  • Ahmed M, Akhtar S, Fanglu M, Hasan M, Shahid A, Yanang X et al (2019) Sucrose synthase (SuSy) gene expression: an indicator for cotton fiber initiation and early development. Russ J Plant Physiol 66:41ā€“49

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci 92(20):9353ā€“9357

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Arpat A, Waugh M, Sullivan JP, Gonzales M, Frisch D, Main D et al (2004) Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol 54(6):911ā€“929

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ayele A, Hequet E, Kelly B (2017) The impact of fiber maturity on estimating the number of cotton (Gossypium hirsutum L.) fibers per seed surface area. Ind Crop Prod 102:16ā€“22

    ArticleĀ  Google ScholarĀ 

  • Bajwa KS, Shahid AA, Rao AQ, Kiani MS, Ashraf MA, Dahab AA et al (2013) Expression of Calotropis procera expansin gene CpEXPA3 enhances cotton fibre strength. Aust J Crop Sci 7(2):206

    CASĀ  Google ScholarĀ 

  • Bajwa KS, Shahid AA, Rao AQ, Bashir A, Aftab A, Husnain T (2015) Stable transformation and expression of GhEXPA8 fiber expansin gene to improve fiber length and micronaire value in cotton. Front Plant Sci 6:838

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Basra AS, Malik C (1984) Development of the cotton fiber. Int Rev Cytol 89:65ā€“113. Elsevier

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bawa A, Anilakumar K (2013) Genetically modified foods: safety, risks and public concernsā€”a review. J Food Sci Technol 50(6):1035ā€“1046

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bayley C, Trolinder N, Ray C, Morgan M, Quisenberry J, Ow D (1992) Engineering 2, 4-D resistance into cotton. Theor Appl Genet 83(5):645ā€“649

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Behery HM (1993) Short fiber content and uniformity index in cotton. CAB International

    Google ScholarĀ 

  • Bradow JM, Wartelle LH, Bauer PJ, Sassenrath-Cole GF (1997) Small-sample cotton fiber quality quantitation. J Cotton Sci 1(1):48ā€“60

    Google ScholarĀ 

  • Brill E, van Thournout M, White RG, Llewellyn D, Campbell PM, Engelen S et al (2011) A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber. Plant Physiol 157(1):40ā€“54

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Brubaker C, Paterson A, Wendel J (1999) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42(2):184ā€“203

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Cohen SN, Chang ACY, Boyer HW, and Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 70(11):3240ā€“3244.

    Google ScholarĀ 

  • Dhindsa R, Beasley C, Ting I (1976) Effects of abscisic acid on in vitro growth of cotton fiber. Planta 130(2):197ā€“201

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43(12):1407ā€“1420

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127(7):1309ā€“1321

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Draye X, Chee P, Jiang C-X, Decanini L, Delmonte TA, Bredhauer R et al (2005) Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach: II. Fiber fineness. Theor Appl Genet 111(4):764ā€“771

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ferguson DL, Turley RB, Kloth RH (1997) Identification of a Ī“-TIP cDNA clone and determination of related A and D genome subfamilies in Gossypium species. Plant Mol Biol 34(1):111ā€“118

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Fryxell P (1992) A revised taxonomic interpretation of Gossypium L (Malvaceae). Rheedea 2:108ā€“116

    Google ScholarĀ 

  • Gilbert M, Slingenbergh J, Xiao X (2008) Climate change and avian influenza. Rev Sci Tech 27(2):459ā€“466

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gokani SJ, Thaker VS (2002) Physiological and biochemical changes associated with cotton fiber development: IX. Role of IAA and PAA.Ā Field Crops Res 77(2ā€“3):127ā€“136

    ArticleĀ  Google ScholarĀ 

  • Haigler CH, Ivanova-Datcheva M, Hogan PS, Salnikov VV, Hwang S, Martin K, Delmer DP (2001) Carbon partitioning to cellulose synthesis. Plant Cell Walls 47:29ā€“51. Springer

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Haigler CH, Zhang D, Wilkerson CG (2005) Biotechnological improvement of cotton fibre maturity. Physiol Plant 124(3):285ā€“294

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Han L-B, Li Y-B, Wang H-Y, Wu X-M, Li C-L, Luo M et al (2013) The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell 25(11):4421ā€“4438

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hassan SZU, Militky J (2012) Acetylcholinesterase based detection of residual pesticides on cotton. Am J Anal Chem 3(02):93

    ArticleĀ  Google ScholarĀ 

  • Hearle JW (2007) Protein fibers: structural mechanics and future opportunities. J Mater Sci 42(19):8010ā€“8019

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hou L, Liu H, Li J, Yang X, Xiao Y, Luo M et al (2008) SCFP, a novel fiber-specific promoter in cotton. Chin Sci Bull 53(17):2639ā€“2645

    CASĀ  Google ScholarĀ 

  • Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan Y, Rahman M, Han J, Wang K, Tianzhen Zhang T (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature Genetics Vol 51 PP: 739ā€“748

    Google ScholarĀ 

  • John ME, Keller G (1996) Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci 93(23):12768ā€“12773

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127(4):1361ā€“1366

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Kozlowski RM (2012) Handbook of natural fibres: types, properties and factors affecting breeding and cultivation. Elsevier

    Google ScholarĀ 

  • Lacape J-M, Llewellyn D, Jacobs J, Arioli T, Becker D, Calhoun S et al (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum x G. barbadense RIL population. BMC Plant Biol 10(1):132

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lee JJ, Woodward AW, Chen ZJ (2007) Gene expression changes and early events in cotton fibre development. Ann Bot 100(7):1391ā€“1401

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lee J, Burns TH, Light G, Sun Y, Fokar M, Kasukabe Y et al (2010) Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation. Planta 232(5):1191ā€“1205

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li X, Wang X, Zhao X, Dutt Y (2004) Improvement of cotton fiber quality by transforming the acsA and acsB genes into Gossypium hirsutum L. by means of vacuum infiltration. Plant Cell Rep 22(9):691ā€“697

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Li X-B, Fan X-P, Wang X-L, Cai L, Yang W-C (2005) The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17(3):859ā€“875

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Li X-R, Wang L, Ruan Y-L (2009) Developmental and molecular physiological evidence for the role of phosphoenolpyruvate carboxylase in rapid cotton fibre elongation. J Exp Bot 61(1):287ā€“295

    ArticleĀ  PubMed CentralĀ  Google ScholarĀ 

  • Li CQ, Song L, Zhao HH, Wang QL, Fu YZ (2014) Identification of quantitative trait loci with main and epistatic effects for plant architecture traits in Upland cotton (Gossypium hirsutum L.). Plant Breed 133(3):390ā€“400

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Li Y, Tu L, Pettolino FA, Ji S, Hao J, Yuan D et al (2016) GbEXPATR, a species-specific expansin, enhances cotton fibre elongation through cell wall restructuring. Plant Biotechnol J 14(3):951ā€“963

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Liu H-C, Creech RG, Jenkins JN, Ma D-P (2000) Cloning and promoter analysis of the cotton lipid transfer protein gene Ltp3. Biochim Biophys Acta 1487(1):106ā€“111

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lu Y, Wei G, Zhu Y (2002) Cloning whole cellulose-synthesizing operon (ayacs operon) from Acetobacter xylinum and transforming it into cultivated cotton plants. Acta Bot Sin 44(4):441ā€“444

    CASĀ  Google ScholarĀ 

  • Malik TH, Ahsan MZ (2009) Review of the cotton market in Pakistan and its future prospects. OCL 2016: 23(6):A606. https://doi.org/10.1051/ocl/2016043

  • Meinert MC, Delmer DP (1977) Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol 59(6):1088ā€“1097

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Naithani S, Rao NR, Singh Y (1982) Physiological and biochemical changes associated with cotton fibre development: I. Growth kinetics and auxin content. Physiol Plant 54(2):225ā€“229

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Naoumkina M, Thyssen GN, Fang DD (2015) RNA-seq analysis of short fiber mutants Ligon-lintless-1 (Li 1) and - 2 (Li 2) revealed important role of aquaporins in cotton (Gossypium hirsutum L.) fiber elongationā€ BMC Plant Biol. 15:65. https://doi.org/10.1186/s12870-015-0454-0

  • Orford SJ, Timmis JN (1998) Specific expression of an expansin gene during elongation of cotton fibres. Biochim Biophys Acta 1398(3):342ā€“346

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Patil G, Do, T, Vuong T D, Valliyodan B, Lee J, D, Chaudhary J. et al. (2016). Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci. Rep. 19:19199. https://doi.org/10.1038/srep19199

  • Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM (1996) Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci 93(22):12637ā€“12642

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Perkins HH, Jr., Ethridge DE, Bragg CK (1984) Fiber. p. 437ā€“509. In R.J. Kohel and C.F. Lewis (ed.) Cotton. Agron. Monogr. 24. ASA, CSSA, and SSSA, Madison, WI

    Google ScholarĀ 

  • Pettigrew WT, Heitholt JJ, Meredith WR (1996) Genotypic interactions with potassium and nitrogen in cotton of varied maturity. Agron J 88(1):89ā€“93

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pillay M, Myers G (1999) Genetic diversity in cotton assessed by variation in ribosomal RNA genes and AFLP markers. Crop Sci 39(6):1881ā€“1886

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Poehlman JM and Borthakur DN (1969) Breeding Asian Field Crops. Oxford and IBH Publishing Co, New Delhi, pp 1ā€“100.

    Google ScholarĀ 

  • Qin Y-M, Zhu Y-X (2011) How cotton fibers elongate: a tale of linear cell-growth mode. Curr Opin Plant Biol 14(1):106ā€“111

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ramey H (1982) The meaning and assessment of cotton fibre fineness. International Institute for Cotton, Manchester

    Google ScholarĀ 

  • Rangel G (2015) From corgis to corn: a brief look at the long history of GMO technology. Blog, Special Edition on GMOs. Science in the News

    Google ScholarĀ 

  • Rauf MA, Zubair S, Azhar A (2015) Ligand docking and binding site analysis with pymol and autodock/vina. Int J Basic Appl Sci 4(2):168

    ArticleĀ  Google ScholarĀ 

  • Ruan Y-L, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 15(4):952ā€“964

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ruan Y-L, Xu S-M, White R, Furbank RT (2004) Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover. Plant Physiol 136(4):4104ā€“4113

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Samuel Yang S, Cheung F, Lee JJ, Ha M, Wei NE, Sze SH et al (2006) Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 47(5):761ā€“775

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Seagull R, Giavalis S (2004) Pre-and post-anthesis application of exogenous hormones alters fiber production in Gossypium hirsutum L. cultivar Maxxa GTO.Ā J Cotton Sci 8:105ā€“111

    CASĀ  Google ScholarĀ 

  • Shah J, Brown RM (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66(4):352ā€“355

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Shi Y-H, Zhu S-W, Mao X-Z, Feng J-X, Qin Y-M, Zhang L, Cheng J, Wei LP, Wang ZY, Zhu YX (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18(3):651ā€“664

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Shu H, Zhou Z, Xu N, Wang Y, Zheng M (2009) Sucrose metabolism in cotton (Gossypium hirsutum L.) fibre under low temperature during fibre development. Eur J Agron 31(2):61ā€“68

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Singh B, Avci U, Inwood SEE, Grimson MJ, Landgraf J, Mohnen D et al (2009) A specialized outer layer of the primary cell wall joins elongating cotton fibers into tissue-like bundles. Plant Physiol 150(2):684ā€“699

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Smith L (1995) Cotton response to deep tillage with controlled traffic on clay. Trans ASAE 38(1):45ā€“50

    ArticleĀ  Google ScholarĀ 

  • Steadman R (1997) Cotton testing. Text Prog 27(1):1ā€“63

    ArticleĀ  Google ScholarĀ 

  • Stewart JM, Oosterhuis D, Heitholt JJ, Mauney JR (2016) Physiology of Cotton, Springer

    Google ScholarĀ 

  • Stiff MR, Haigler CH (2012) Recent advances in cotton fiber development. Flowering and fruiting in cotton. The Cotton Foundation, Tennessee, pp 163ā€“192

    Google ScholarĀ 

  • Tang W, He Y, Tu L, Wang M, Li Y, Ruan Y-L, Zhang X (2014) Down-regulating annexin gene GhAnn2 inhibits cotton fiber elongation and decreases Ca 2+ influx at the cell apex. Plant Mol Biol 85(6):613ā€“625

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Wang L, Li X-R, Lian H, Ni D-A, He Y-k, Chen X-Y, Ruan Y-L (2010) Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiol 154(2):744ā€“756

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Westafer JM, Brown JR (1976) Electron microscopy of the cotton fibre: new observations on cell wall formation. Cytobios 15(58ā€“59):111ā€“138

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Wilkins TA, Arpat AB (2005) The cotton fiber transcriptome. Physiol Plant 124(3):295ā€“300

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Wu Y, Machado AC, White RG, Llewellyn DJ, Dennis ES (2006) Expression profiling identifies genes expressed early during lint fibre initiation in cotton. Plant Cell Physiol 47(1):107ā€“127

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Xiao Y-H, Zhang Z-S, Yin M-H, Luo M, Li X-B, Hou L, Pei Y (2007) Cotton flavonoid structural genes related to the pigmentation in brown fibers. Biochem Biophys Res Commun 358(1):73ā€“78

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Xiao Y-H, Li D.-M., Yin M.-H, Li, X.-B, Zhang M, Wang Y.-J, Pei Y (2010). Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis. Journal of Plant Physiology, 167(10), 829ā€“837. https://doi.org/10.1016/j.jplph.2010.01.003

  • Xu T, Qu Z, Yang X, Qin X, Xiong J, Wang Y et al (2009) A cotton kinesin GhKCH2 interacts with both microtubules and microfilaments. Biochem J 421(2):171ā€“180

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Xu S-M, Brill E, Llewellyn DJ, Furbank RT, Ruan Y-L (2012) Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production. Mol Plant 5(2):430ā€“441

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G et al (2014) The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol 166(2):945ā€“959

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • You-Ming Y, Chu-Nian X, Bao-Min W, Jun-Zhen J (2001) Effects of plant growth regulators on secondary wall thickening of cotton fibres. Plant Growth Regul 35(3):233ā€“237

    ArticleĀ  Google ScholarĀ 

  • Yu Y, Wu S, Nowak J, Wang G, Han L, Feng Z et al (2019) Live-cell imaging of the cytoskeleton in elongating cotton fibres. Nat Plants 5(5):498

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang T, Yuan Y, Yu J, Guo W, Kohel RJ (2003) Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor Appl Genet 106(2):262ā€“268

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhang M, Zheng X, Song S, Zeng Q, Hou L, Li D et al (2011) Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol 29(5):453

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zhu S-W, Gao P, Sun J-S, Wang H-H, Luo X-M, Jiao M-Y et al (2006) Genetic transformation of green-colored cotton. In Vitro Cell Dev Biol Plant 42(5):439ā€“444

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhu H, Lv J, Zhao L, Tong X, Zhou B, Zhang T, Guo W (2012) Molecular evolution and phylogenetic analysis of genes related to cotton fibers development from wild and domesticated cotton species in Gossypium. Mol Phylogenet Evol 63(3):589ā€“597

    ArticleĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idrees Ahmad Nasir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Latif, A. et al. (2021). GM Technology and Fiber Traits. In: Rahman, Mu., Zafar, Y., Zhang, T. (eds) Cotton Precision Breeding. Springer, Cham. https://doi.org/10.1007/978-3-030-64504-5_12

Download citation

Publish with us

Policies and ethics