Skip to main content

First-Generation Transgenic Cotton Crops

  • Chapter
  • First Online:
Cotton Precision Breeding

Abstract

Cotton is an important natural fiber crop and is known as “white gold” due to its economic importance. Its seed is also a source of oil, proteins, and feed for the livestock. Sustaining cotton production has been a major challenge owing to the multitude of biotic and abiotic stresses. Among these, the infestation of insect pests and diseases are the most devastating yield depressing factors. Keeping insect population under control heavily relies on the application of chemicals (pesticides) which may raise serious environmental concerns. Production of insecticidal proteins in the cotton plants through different genetic means opened a new era of insect-pest management. On the basis of number of transgenes introduced, three different generations of the Bt-cotton (cotton expressing genes coding for different insect toxins from the soil bacterium Bacillus thuringiensis) have been developed. The first generation of Bt cotton carried a single Bt gene, while the second- and third-generation Bt cottons contained double and triple genes for a better control over lepidopteran insects. In addition to Bt genes, genes conferring tolerance to different herbicides have also been introduced in cotton for controling weeds more effectively. Cultivation of Bt cotton has been instrumental in controlling bollworms; however, the emergence of resistance in insects against the Bt toxins has been reported in few regions worldwide. In this chapter, current state of the art knowledge on transgenic cotton including generations of Bt cotton, mechanism of action, risk assessment, and prospects has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adamczyk JJ Jr, Adams LC, Hardee DD (2001) Field efficacy and seasonal expression profiles for terminal leaves of single and double Bacillus thuringiensis toxin cotton genotypes. J Econ Entomol 94(6):1589–1593

    Article  CAS  PubMed  Google Scholar 

  • AgBioWorld (2011). http://www.agbioworld.org/biotech-info/articles/biotech-art/safety-bt-cotton.html. Accessed 13 Dec 2019

  • Agritech (2019) TNAU Agritech portal: biotechnology. http://agritech.tnau.ac.in/bio-tech/biotech btcotton_env.html

  • Akhtar W, Sengupta D, Chowdhury A (2009) Impact of pesticides used in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    Article  Google Scholar 

  • Ali S, Hameed S, Masood SHAHID, Ali GM, Zafar Y (2010) Status of Bt cotton cultivation in major growing areas of Pakistan. Pak J Bot 42(3):1583–1594

    Google Scholar 

  • Anonymous (2017) Enlist Duo herbicide product label. Dow AgroSciences Publication No. D02-407-003. Dow AgroSciences, Indianapolis, 7 p

    Google Scholar 

  • Arshad M, Khan RR, Aslam A, Akbar W (2018) Transgenic Bt cotton: effects on target and non-target insect diversity. In: Past, present and future trends in cotton breeding. IntechOpen

    Google Scholar 

  • Arya S, Shrivastav S (2015) Seeds of doubt: Monsanto never had Bt cotton patent. https://timesofindia.indiatimes.com/india/Seeds-of-doubt-Monsanto-never-had-Bt-cotton-patent/articleshow/47578304.cms

  • Awan MF, Abbas MA, Muzaffar A, Ali A, Tabassum B, Rao AQ et al (2015) Transformation of insect and herbicide resistance genes in cotton (Gossypium hirsutum L.). J Agric Sci Technol 17(2):287–298

    Google Scholar 

  • Baeumler S, Wulff D, Tagliani L, Song P (2006) A real-time quantitative PCR detection method is specific to widestrike transgenic cotton (event 281-24-236/3006-210-23). J Agric Food Chem 54(18):6527–6534

    Article  CAS  PubMed  Google Scholar 

  • Bakhsh K, Akram W, Jahanzeb A, Khan M (2016) Estimating the productivity of Bt cotton and its impact on pesticide use in Punjab (Pakistan). Pak Econ Soc Rev 54(1):15

    Google Scholar 

  • BASF (2019) Insect Resistance Management (IRM) Guide. https://industries.basf.com/assets/northamerica/us/en/Agriculture/Crop%20Protection/BCS/InsectResistanceManagementGuide.pdf

  • Bawa AS, Anilakumar KR (2013) Genetically modified foods: safety, risks and public concerns—a review. J Food Sci Technol 50(6):1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Ben-Dov E (2014) Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins 6(4):1222–1243

    Article  PubMed  PubMed Central  Google Scholar 

  • Blair-Kerth LK, Dotray PA, Keeling JW, Gannaway JR, Oliver MJ, Quisenberry JE (2001) Tolerance of transformed cotton to glufosinate. Weed Sci 49(3):375–380

    Article  CAS  Google Scholar 

  • Bravo A, Soberón M (2008) How to cope with insect resistance to Bt toxins? Trends Biotechnol 26(10):573–579

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435

    Article  CAS  PubMed  Google Scholar 

  • Bravo A, Gill SS, Soberón M (2018) Bacillus Thuringiensis: mechanisms and USE. Reference module in life sciences. https://doi.org/10.1016/b978-0-12-809633-8.04071-1

  • Brévault T, Heuberger S, Zhang M, Ellers-Kirk C, Ni X, Masson L et al (2013) The potential shortfall of pyramided transgenic cotton for insect resistance management. Proc Natl Acad Sci 110(15):5806–5811

    Article  PubMed  PubMed Central  Google Scholar 

  • Brévault T, Tabashnik BE, Carrière Y (2015) A seed mixture increases the dominance of resistance to Bt cotton in Helicoverpa zea. Sci Rep 5:9807

    Article  PubMed  PubMed Central  Google Scholar 

  • Broadway RM (1995) Are insects resistant to plant proteinase inhibitors? J Insect Physiol 41(2):107–116

    Article  CAS  Google Scholar 

  • Brookes G, Barfoot P (2008) GM crops: global socio-economic and environmental impacts 1996-2006. PG Economics Ltd, Dorchester

    Google Scholar 

  • Brookes G, Barfoot P (2009) Global impact of biotech crops: socio-economic & environmental effects 1996–2007. Outlooks Pest Manag 20(6):258–264

    Article  Google Scholar 

  • Campbell BT, Saha S, Percy R, Frelichowski J, Jenkins JN, Park W et al (2010) Status of the global cotton germplasm resources. Crop Sci 50(4):1161–1179

    Article  Google Scholar 

  • Carrière Y, Crickmore N, Tabashnik BE (2015) Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat Biotechnol 33(2):161

    Article  PubMed  Google Scholar 

  • Castle LA, Wu G, McElroy D (2006) Agricultural input traits: past, present, and future. Curr Opin Biotechnol 17(2):105–112

    Article  CAS  PubMed  Google Scholar 

  • Congreve M (2015) Roundup ready flex cotton—friend or foe for grass weed control? https://grdc.com.au/news-and-media/news-and-media-releases/north/2015/09/roundup-ready-flex-cotton-and-grass-weed-control

  • Corbin DR, Grebenok RJ, Ohnmeiss TE, Greenplate JT, Purcell JP (2001) Expression and chloroplast targeting of cholesterol oxidase in transgenic tobacco plants. Plant Physiol 126(3):1116–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craigmyle BD, Ellis JM, Bradley KW (2013) Influence of herbicide programs on weed management in soybean with resistance to glufosinate and 2, 4-D. Weed Technol 27(1):78–84

    Article  CAS  Google Scholar 

  • Culpepper AS, York AC (1999) Weed management and net returns with transgenic, herbicide-resistant, and nontransgenic cotton (Gossypium hirsutum). Weed Technol 13(2):411–420

    Article  CAS  Google Scholar 

  • Dhaliwal GS, Jindal V, Dhawan AK (2010) Insect pest problems and crop losses: changing trends. Indian J Ecol 37(1):1–7

    Google Scholar 

  • Dhanaraj AL, Willse AR, Kamath SP (2019) Stability of expression of Cry1Ac and Cry2Ab2 proteins in Bollgard-II hybrids at different stages of crop growth in different genotypes across cropping seasons and multiple geographies. Transgenic Res 28(1):33–50

    Article  CAS  PubMed  Google Scholar 

  • Domínguez-Arrizabalaga M, Villanueva M, Fernandez AB, Caballero P (2019) A strain of Bacillus thuringiensis containing a novel cry7Aa2 gene that is toxic to Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Insects 10(9):259

    Article  PubMed Central  Google Scholar 

  • Dow AgroSciences (2013). http://www.plantmanagementnetwork.org/pub/php/news/2013/ThreeGeneInsectCotton/

  • Downes S, Mahon R (2012) Evolution, ecology, and management of resistance in Helicoverpa spp. to Bt cotton in Australia. J Invertebr Pathol 110(3):281–286

    Article  PubMed  Google Scholar 

  • Downes S, Mahon RJ, Rossiter L, Kauter G, Leven T, Fitt G, Baker G (2010) Adaptive management of pest resistance by Helicoverpa species (Noctuidae) in Australia to the Cry2Ab Bt-toxin in Bollgard II® cotton. Evol Appl 3(5–6):574–584

    Article  PubMed  PubMed Central  Google Scholar 

  • Egan JF, Barlow KM, Mortensen DA (2014) A meta-analysis on the effects of 2, 4-D and dicamba drift on soybean and cotton. Weed Sci 62(1):193–206

    Article  CAS  Google Scholar 

  • ENT (2016) General Entomology | Resource Library (Tutorials). (2016, March 26). Retrieved from https://projects.ncsu.edu/cals/course/ent425/library/tutorials/applied_entomology/resistance.html

  • Fleming D, Musser F, Reisig D, Greene J, Taylor S, Parajulee M et al (2018) Effects of transgenic Bacillus thuringiensis cotton on insecticide use, heliothine counts, plant damage, and cotton yield: a meta-analysis, 1996-2015. PLoS One 13(7):e0200131

    Article  PubMed  PubMed Central  Google Scholar 

  • Francis L (2019) Developing resistance to Bt genes in cotton bollworm. https://agrilife.org/texasrowcrops/2019/03/18/developing-resistance-to-bt-genes-in-cotton-bollworm/

  • Gadelha ICN, Fonseca NBS, Oloris SCS, Melo MM, Soto-Blanco B (2014) Gossypol toxicity from cottonseed products. ScientificWorldJournal 2014:231635

    Article  PubMed  PubMed Central  Google Scholar 

  • Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS One 6(7):e22629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatehouse AMR, Ferry N, Edwards MG, Bell HA (2011) Insect-resistant biotech crops and their impacts on beneficial arthropods. Philos Trans R Soc B Biol Sci 366(1569):1438–1452

    Article  CAS  Google Scholar 

  • Gill HK, Garg H (2014) Pesticides: environmental impacts and management strategies. In: Pesticides-toxic aspects. IntechOpen

    Google Scholar 

  • Gould F, Tabashnik B (1998) Bt-cotton resistance management. In: Now or never: serious new plans to save a natural Pest control. pp 65–105

    Google Scholar 

  • Greenplate JT, Mullins JW, Penn SR, Dahm A, Reich BJ, Osborn JA et al (2003) Partial characterization of cotton plants expressing two toxin proteins from Bacillus thuringiensis: relative toxin contribution, toxin interaction, and resistance management. J Appl Entomol 127(6):340–347

    Article  CAS  Google Scholar 

  • Guo S.D., Cui H., Xia L., Wu D., Ni W., Zhang Z., Zhang B., Xu Y. (1999) Development of bivalent insect-resistant transgenic cotton plants. Scientia Agricultura Sinica, 32: 1–7.

    Google Scholar 

  • Guo Z, Kang S, Chen D, Wu Q, Wang S, Xie W et al (2015) MAPK signaling pathway alters the expression of midgut ALP and ABCC genes and causes resistance to Bacillus thuringiensis Cry1Ac toxin in diamondback moth. PLoS Genet 11(4):e1005124

    Article  PubMed  PubMed Central  Google Scholar 

  • Head GP, Greenplate J (2012) The design and implementation of insect resistance management programs for Bt crops. GM Crops Food 3(3):144–153

    Article  PubMed  Google Scholar 

  • Huang J, Rozelle S, Pray C, Wang Q (2002) Plant biotechnology in China. Science 295(5555):674–676

    Article  CAS  PubMed  Google Scholar 

  • Hwang HH, Gelvin SB, Lai EM (2015) Agrobacterium biology and its application to transgenic plant production. Front Plant Sci 6:265

    Article  PubMed  PubMed Central  Google Scholar 

  • Ijaz (2019) First Bt cotton grown in Pakistan. http://www.pakissan.com/english/advisory/biotechnology/first.bt.cotton.grown.in.pakistan.shtml. Accessed 17 Dec 2019

  • ISAAA (2017a) Global status of commercialized biotech/GM crops in 2017: biotech crop adoption surges as economic benefits accumulate in 22 years. ISAAA Brief No. 53, ISAAA, Ithaca

    Google Scholar 

  • ISAAA (2017b) GM crop events approved in China. https://www.isaaa.org/gmapprovaldatabase/approvedeventsin/default.asp?CountryID=CN. Accessed 17 Dec 2019

  • ISAAA (2018 Oct) Pocket K No. 6: Bt Insect Resistant Technology. https://www.isaaa.org/resources/publications/pocketk/6/default.asp

  • James C (2012) Global status of commercialized biotech/GM crops. ISAAA Brief No. 44, International Service for the Acquisition of Agri-biotech Application, ISAAA, Ithaca

    Google Scholar 

  • Jin L, Zhang H, Lu Y, Yang Y, Wu K, Tabashnik BE, Wu Y (2015) A large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops. Nat Biotechnol 33(2):169

    Article  CAS  PubMed  Google Scholar 

  • Jin L, Wang J, Guan F, Zhang J, Yu S, Liu S et al (2018) A dominant point mutation in a tetraspanin gene associated with field-evolved resistance of cotton bollworm to transgenic Bt cotton. Proc Natl Acad Sci 115(46):11760–11765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouanin L, Bonadé-Bottino M, Girard C, Morrot G, Giband M (1998) Transgenic plants for insect resistance. Plant Sci 131(1):1–11

    Article  CAS  Google Scholar 

  • Jurat-Fuentes JL, Adang MJ (2006) Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae. J Invertebr Pathol 92(3):166–171

    Article  CAS  PubMed  Google Scholar 

  • Kazmin A (2016 Oct 18) Monsanto faces growing troubles in India. Financial Times. Retrieved 8 June 2016

    Google Scholar 

  • Koch MS, Ward JM, Levine SL, Baum JA, Vicini JL, Hammond BG (2015) The food and environmental safety of Bt crops. Front Plant Sci 6:283

    Article  PubMed  PubMed Central  Google Scholar 

  • Kouser S, Spielman DJ, Qaim M (2019) Transgenic cotton and farmers’ health in Pakistan. PLoS One 14(10):e0222617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Chandra A, Pandey KC (2008) Bacillus thuringiensis (Bt) transgenic crop: an environment-friendly insect-pest management strategy. J Environ Biol 29(5):641–653

    CAS  PubMed  Google Scholar 

  • Kurmanath KV (2015) Wily Pink Bollworm Survives Monsanto’s Bollgard-II. http://www.thehindubusinessline.com/economy/agri-business/wily-pink-bollworm-survives-monsantos-bollgardii/article7814810.ece

  • Liu Y, Tabashnik BE (1997) Inheritance of resistance to the Bacillus thuringiensis toxin Cry1C in the diamondback moth. Appl Environ Microbiol 63(6):2218–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardo L, Coppola G, Zelasco S (2016) New technologies for insect-resistant and herbicide-tolerant plants. Trends Biotechnol 34(1):49–57

    Article  CAS  PubMed  Google Scholar 

  • Luo JY, Zhang S, Lv LM, Wang CY, Zhu XZ, Cui JJ (2015) The effects of transgenic Cry1Ac+ Cry2Ab cotton on cotton bollworm control and functional response of predators on whitefly. Yi chuan=. Hereditas 37(6):575–581

    PubMed  Google Scholar 

  • Mall T, Gupta M, Dhadialla TS, Rodrigo S (2019) Overview of biotechnology-derived herbicide tolerance and insect resistance traits in plant agriculture. In: Transgenic plants. Humana Press, New York, pp 313–342

    Chapter  Google Scholar 

  • Malone LA, Gatehouse AM, Barratt BI (2008) Beyond Bt: alternative strategies for insect-resistant genetically modified crops. In: Integration of insect-resistant genetically modified crops within IPM programs. Springer, Dordrecht, pp 357–417

    Chapter  Google Scholar 

  • Manjunath TM (2011) Question Answer on BT_cotton in India. Association of a biotechnology Led Enterprises

    Google Scholar 

  • Manyangarirwa W, Turnbull M, McCutcheon GS, Smith JP (2006) Gene pyramiding as a Bt resistance management strategy: how sustainable is this strategy? Afr J Biotechnol 5(10):781–785

    Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ et al (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25(11):1307

    Article  CAS  PubMed  Google Scholar 

  • Mao YB, Tao XY, Xue XY, Wang LJ, Chen XY (2011) Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 20(3):665–673

    Article  CAS  PubMed  Google Scholar 

  • Mathew LG, Ponnuraj J, Mallappa B, Chowdary LR, Zhang J, Tay WT et al (2018) ABC transporter mis-splicing associated with resistance to Bt toxin Cry2Ab in laboratory-and field-selected pink bollworm. Sci Rep 8(1):13531

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayee CD, P Singh AB Dongre MRK Rao, S Raj (2002) Transgenic Bt cotton. Technical Bulletin 22, Central Institute For Cotton Research, Nagpur. http://www.cicr.org.in/pdf/transgenic_bt_cotton.pdf

  • Mehboob-ur-Rahman, Tayyaba Shaheen, Nabila Tabbasam, Muhammad Atif Iqbal, Muhammad Ashraf, Yusuf Zafar, Andrew H. Paterson, (2012) Cotton genetic resources. A review. Agronomy for Sustainable Development 32 (2):419–432

    Google Scholar 

  • Menon M (2017) A frayed history: the journey of cotton in India. Oxford University Press, Oxford

    Google Scholar 

  • Monsanto (2019) Bollgard 3. http://www.monsantoglobal.com/global/au/products/pages/bollgard3.aspx

  • Morse S, Bennett R, Ismael Y (2006) Environmental impact of genetically modified cotton in South Africa. Agric Ecosyst Environ 117(4):277–289

    Article  Google Scholar 

  • Murugkar M, Ramaswami B, Shelar M (2007) Competition and monopoly in the Indian cotton seed market* May 2007

    Google Scholar 

  • Naimov S, Boncheva R, Karlova R, Dukiandjiev S, Minkov I, de Maagd RA (2008) Solubilization, activation, and insecticidal activity of Bacillus thuringiensis serovar thompsoni HD542 crystal proteins. Appl Environ Microbiol 74(23):7145–7151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naranjo SE (2010) Impacts of Bt transgenic cotton on integrated pest management. J Agric Food Chem 59(11):5842–5851

    Article  PubMed  Google Scholar 

  • Ni M, Ma W, Wang X, Gao M, Dai Y, Wei X et al (2017) Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance. Plant Biotechnol J 15(9):1204–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norsworthy JK, Ward SM, Shaw DR, Llewellyn RS, Nichols RL, Webster TM et al (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60(SP1):31–62

    Article  CAS  Google Scholar 

  • Ocelotl J, Sánchez J, Arroyo R, García-Gómez BI, Gómez I, Unnithan GC et al (2015) Binding and oligomerization of modified and native Bt toxins in resistant and susceptible Pink Bollworm. PLoS One 10(12):e0144086

    Article  PubMed  PubMed Central  Google Scholar 

  • Osman GEH, Already R, Assaeedi ASA, Organji SR, El-Ghareeb D, Abulreesh HH, Althubiani AS (2015) Bioinsecticide Bacillus thuringiensis a comprehensive review. Egypt J Biol Pest Control 25(1):271

    Google Scholar 

  • Özkara A, Akyıl D, Konuk M (2016) Pesticides, environmental pollution, and health. In: Environmental health risk-hazardous factors to living species. IntechOpen

    Google Scholar 

  • Palma L, Muñoz D, Berry C, Murillo J, Caballero P (2014) Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins 6(12):3296–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peter (2017 Apr 17) Monsanto’s Bollgard 3 not registered for cottonseed exports to China. https://www.weeklytimesnow.com.au/agribusiness/monsantos-bollgard-3-not-registered-for-cottonseed-exports-to-china/news-story/48ca44f7af5ef38f4c0f19582ca569c9

  • Pigott CR, Ellar DJ (2007) Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev 71(2):255–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plewis I (2014) Indian farmer suicides: is GM cotton to blame? Significance 11(1):14–18

    Article  Google Scholar 

  • Popp J, Pető K, Nagy J (2013) Pesticide productivity and food security. A review. Agron Sustain Dev 33(1):243–255

    Article  Google Scholar 

  • Pray CE, Huang J, Hu R, Rozelle S (2002) Five years of Bt cotton in China–the benefits continue. Plant J 31(4):423–430

    Article  CAS  PubMed  Google Scholar 

  • Purcell JP, Perlak FJ (2004) Global impact of insect-resistant (Bt) cotton. AgBioForum 7(1&2):27–30. Available on the World Wide Web: http://www.agbioforum.org

  • Pyke B (2000) The performance of INGARD® cotton in Australia in the 1998/99 season. Cotton R&D Corporation Occasional Paper, Narrabri New South Wales

    Google Scholar 

  • Rao IA (2007) Why not GM crops [Internet]. http://www.pakistan.com/english/advisory/biotechnology/why-not.gm.crops.shtml. Accessed 2008-08-05

  • Robinson E (2018 Dec 7) What will second generation Bt cotton contribute? https://www.farmprogress.com/what-will-second-generation-bt-cotton-contribute

  • Rocha-Munive MG, Eguiarte LE, Soberón M, Castañeda S, Niaves-Nava E, Scheinvar E et al (2018) Evaluation of the impact of genetically modified cotton after 20 years of cultivation in Mexico. Front Bioeng Biotechnol 6:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9(3):283–300

    Article  CAS  PubMed  Google Scholar 

  • Sankula S, Marmon G, Blumenthal E (2005) Biotechnology-derived crops planted in 2004: impacts on US agriculture. National Center for Food and Agricultural Policy, Washington, DC

    Google Scholar 

  • Saravanan, S., and V. Mohanasundaram (2016) Development and adoption of Bt cotton in India: Economic, environmental and health issues. 1–19.

    Google Scholar 

  • Sawazaki, H.E., Duarte, A.P., Fuzatto, M.G., Sawazaki, E., Grandi, S.H.R., de Ponte, J.F. and Nogueira, L. (2015) Identification and Quantification of Corn, Soybean and Cotton Genetically Modified by Real Time PCR. American Journal of Molecular Biology, 5, 84–93. http://dx.doi.org/10.4236/ajmb.2015.53007

  • Saxena D, Flores S, Stotzky G (2002) Bt toxin is released in root exudates from 12 transgenic corn hybrids representing three transformation events. Soil Biol Biochem 34(1):133–137

    Article  CAS  Google Scholar 

  • Schünmann PH, Llewellyn DJ, Surin B, Boevink P, De Feyter RC, Waterhouse PM (2003) A suite of novel promoters and terminators for plant biotechnology. Funct Plant Biol 30(4):443–452

    Article  PubMed  Google Scholar 

  • Seetharaman G (2018 Jan 21) These two issues could put the brakes on the Bt cotton story. https://economictimes.indiatimes.com/news/economy/agriculture/the-brakes-are-applied-on-the-bt-cotton-story/articleshow/62583116.cms?from=mdr

  • Shahid J (2015 Dec 28) Punjab reports low cotton production. https://www.dawn.com/news/1229109

  • Sharma PD (2014) Environmental biology & toxicology. Rastogi Publications

    Google Scholar 

  • Sheikh AA, Wani MA, Bano P, Un S, Nabi TAB, Bhat MA, Dar MS (2017) An overview of resistance of insect pests against Bt crops. J Entomol Zool Stud 5:941–948

    Google Scholar 

  • Shodhganga (2019). https://shodhganga.inflibnet.ac.in/bitstream/10603/142626/9/09_chapter3.pdf. Accessed 14 Dec 2019

  • Siegwart M, Graillot B, Blachere Lopez C, Besse S, Bardin M, Nicot PC, Lopez-Ferber M (2015) Resistance to bio-insecticides or how to enhance their sustainability: a review. Front Plant Sci 6:381

    Article  PubMed  PubMed Central  Google Scholar 

  • Singla N, Garg M (2013) Effect of crude cottonseed oil containing gossypol on the fertility of male and estrous cycle of female Bandicota bengalensis Gray and Hardwicke. J Appl Anim Res 41(2):156–165

    Article  CAS  Google Scholar 

  • Smyth, S., Andrew, AgSciGuy, Jc, Rauschenberger, G., John, … Kms (2017, October 1). Why Roundup Ready Crops Have Lost their Allure. Retrieved from http://sitn.hms.harvard.edu/flash/2015/roundup-ready-crops/

  • Steadman J, Steadman J, Ramkumar S, Thompson C, Grower C (2018 Apr 25) Bayer Adds TwinLink Plus Pest Protection for 2017. https://www.cottongrower.com/cotton-news/bayer-adds-twinlink-plus-pest-protection-for-2017/

  • Subramanian A, Qaim M (2009) Village-wide effects of agricultural biotechnology: the case of Bt cotton in India. World Dev 37(1):256–267

    Article  Google Scholar 

  • Suntornpithug P, Kalaitzandonakes NG (2009) Understanding the adoption of cotton biotechnologies in the US: firm level evidence. Agric Econ Rev 10(389-2016-23316):80–96

    Google Scholar 

  • Tabashnik BE, Carrière Y (2017) The surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 35(10):926

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Gassmann AJ, Crowder DW, Carrière Y (2008) Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol 26(2):199

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE, Wu K, Wu Y (2012) Early detection of field-evolved resistance to Bt cotton in China: cotton bollworm and pink bollworm. J Invertebr Pathol 110(3):301–306

    Article  PubMed  Google Scholar 

  • Tay WT, Mahon RJ, Heckel DG, Walsh TK, Downes S, James WJ et al (2015) Insect resistance to Bacillus thuringiensis toxin Cry2Ab is conferred by mutations in an ABC transporter subfamily A protein. PLoS Genet 11(11):e1005534

    Article  PubMed  PubMed Central  Google Scholar 

  • Torres JB, Ruberson JR, Whitehouse M (2009) Transgenic cotton for sustainable pest management: a review. In: Organic farming, pest control and remediation of soil pollutants. Springer, Dordrecht, pp 15–53

    Chapter  Google Scholar 

  • Wan P, Xu D, Cong S, Jiang Y, Huang Y, Wang J et al (2017) Hybridizing transgenic Bt cotton with non-Bt cotton counters resistance in pink bollworm. Proc Natl Acad Sci 114(21):5413–5418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witjaksono J, Wei X, Mao S, Gong W, Li Y, Yuan Y (2014) Yield and economic performance of the use of GM cotton worldwide over time: a review and meta-analysis. China Agric Econ Rev 6(4):616–643

    Article  Google Scholar 

  • Wu Y (2014) Detection and mechanisms of resistance evolved in insects to Cry toxins from Bacillus thuringiensis. In: Advances in insect physiology, vol 47. Academic, pp 297–342

    Google Scholar 

  • Xiao Y, Liu K, Zhang D, Gong L, He F, Soberón M et al (2016) Resistance to Bacillus thuringiensis mediated by an ABC transporter mutation increases susceptibility to toxins from other bacteria in an invasive insect. PLoS Pathog 12(2):e1005450

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Dai Q, Hu R, Pacheco S, Yang Y, Liang G et al (2017) A single point mutation resulting in cadherin mislocalization underpins resistance against Bacillus thuringiensis toxin in cotton bollworm. J Biol Chem 292(7):2933–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Yu L, Wu Y (2005) Disruption of a cadherin gene associated with resistance to Cry1Ac δ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl Environ Microbiol 71(2):948–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang P, Iles M, Yan S, Jolliffe F (2005) Farmers’ knowledge, perceptions and practices in transgenic Bt cotton in small producer systems in Northern China. Crop Prot 24(3):229–239

    Article  Google Scholar 

  • Yang F, Kerns DL, Head GP, Price P, Huang F (2017) Cross-resistance to purified Bt proteins, Bt corn and Bt cotton in a Cry2Ab2-corn resistant strain of Spodoptera frugiperda. Pest Manag Sci 73(12):2495–2503

    Article  CAS  PubMed  Google Scholar 

  • Zhang B (2013) Transgenic cotton: from biotransformation methods to agricultural application. In: Transgenic cotton. Humana Press, Totowa, pp 3–15

    Chapter  Google Scholar 

  • Zhang H, Tian W, Zhao J, Jin L, Yang J, Liu C et al (2012) The diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China. Proc Natl Acad Sci 109(26):10275–10280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Tisdell CA (2009) The sustainability of cotton production in China and in Australia: Comparative economic and environmental issues (No. 1741-2016-140564).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aftab Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, A., Ghouri, M.Z., Jamil, A., Khan, S.H., Ahmad, N., Rahman, Mu. (2021). First-Generation Transgenic Cotton Crops. In: Rahman, Mu., Zafar, Y., Zhang, T. (eds) Cotton Precision Breeding. Springer, Cham. https://doi.org/10.1007/978-3-030-64504-5_10

Download citation

Publish with us

Policies and ethics