Skip to main content

Analog IP Protection and Evaluation

  • Chapter
  • First Online:
Emerging Topics in Hardware Security

Abstract

The increasing cost of manufacturing integrated circuits (IC) has forced many companies to go fabless. With the outsourcing of IC fabrication in a globalized/distributed design flow, including multiple (potentially untrusted) entities, the semiconductor industry faces several challenging security threats. This fragility in the face of weak state-of-the-art intellectual property (IP) protection has resulted in hardware security vulnerabilities, such as IP piracy, overbuilding, reverse engineering, and hardware Trojans. To address these issues at the hardware level, different design-for-trust (DfTr) techniques, such as IC metering, watermarking, IC camouflaging, split manufacturing, and logic locking have been proposed to secure digital circuits. Though there are many DfTr techniques to secure digital circuits, there is a great dearth of techniques for analog and mixed-signal (AMS) IP protection. However, analog ICs are more prone to supply-chain attacks than digital ICs as they are easier to reverse engineer. This high vulnerability is due to their low transistor count compared to their digital counterparts. To address the impact of process variations, they also have predefined layout patterns, e.g., common-centroid. Analog ICs are not simple, although they have less number of transistors. Even with only hundreds of transistors, analog IC design requires highly experienced designers and a long time, as analog behaviors are quite complicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Rostami, F. Koushanfar, R. Karri, A primer on hardware security: models, methods, and metrics. Proc. IEEE 102(8), 1283–1295 (2014)

    Article  Google Scholar 

  2. T.S. Perry, Why hardware engineers have to think like cybercriminals, and why engineers are easy to fool (2017), Accessed 21 August 2020 [Online]. Available https://bit.ly/2RfoBkS

  3. J.A. Roy, F. Koushanfar, I.L. Markov, Ending piracy of integrated circuits. IEEE Comput. 43(10), 30–38 (2010)

    Article  Google Scholar 

  4. J. Rajendran, Y. Pino, O. Sinanoglu, R. Karri, Security analysis of logic obfuscation, in IEEE/ACM Design Automation Conference (2012), pp. 83–89

    Google Scholar 

  5. Y. Xie, A. Srivastava, Mitigating SAT attack on logic locking International Conference on Cryptographic Hardware and Embedded Systems (2016), pp. 127–146

    Google Scholar 

  6. X. Xu, B. Shakya, M.M. Tehranipoor, D. Forte, Novel bypass attack and BDD-based tradeoff analysis against all known logic locking attacks, in Cryptographic Hardware and Embedded Systems (2017), pp. 189–210

    Google Scholar 

  7. M. Yasin, A. Sengupta, M.T. Nabeel, M. Ashraf, J. Rajendran, O. Sinanoglu, Provably-secure logic locking: from theory to practice, in ACM SIGSAC Conference on Computer & Communications Security (2017), pp. 1601–1618

    Google Scholar 

  8. IHS Technology Press Release, Top 5 most counterfeited parts represent a $169 billion potential challenge for global semiconductor industry (2012) [Online]. Available http://technology.ihs.com/405654/top-

  9. A. Hastings, The Art of Analog Layout (Pearson, London, 2005)

    Google Scholar 

  10. R.A. Rutenbar, Design automation for analog: the next generation of tool challenges, in IEEE/ACM International Conference on Computer-Aided Design (2006), pp. 458–460

    Google Scholar 

  11. Y.M. Alkabani, F. Koushanfar, Active hardware metering for intellectual property protection and security, in USENIX Security Symposium (2007)

    Google Scholar 

  12. J. Rajendran, M. Sam, O. Sinanoglu, R. Karri, Security analysis of integrated circuit camouflaging, in ACM SIGSAC Conference on Computer & Communications Security (2013), pp. 709–720

    Google Scholar 

  13. S. Garg, J. Rajendran, Split Manufacturing (Springer International Publishing, Berlin, 2017)

    Book  Google Scholar 

  14. P. Tuyls, G. Schrijen, B. Škorić, J. van Geloven, N. Verhaegh, R. Wolters, Read-proof hardware from protective coatings, in Cryptographic Hardware and Embedded Systems (2006), pp. 369–383

    Google Scholar 

  15. M. Integrated, DeepCover security manager for low-voltage operation with 1KB secure memory and programmable tamper hierarchy (2010), https://www.maximintegrated.com/en/products/embedded-security/security-managers/DS3660.html. Accessed 21 August 2020

  16. A. Kahng, S. Mantik, I. Markov, M. Potkonjak, P. Tucker, H. Wang, G. Wolfe, Robust IP watermarking methodologies for physical design, in IEEE/ACM Design Automation Conference (1998), pp. 782–787

    Google Scholar 

  17. G. Wolfe, J.L. Wong, M. Potkonjak, Watermarking graph partitioning solutions, IEEE/ACM Design Automation Conference (2001), pp. 486–489

    Google Scholar 

  18. C.J. Alpert, A.B. Kahng, Recent directions in netlist partitioning: a survey. Integr. VLSI J. 19(1–2), 1–81 (1995)

    Article  Google Scholar 

  19. J. Lach, W.H. Mangione-Smith, M. Potkonjak, FPGA fingerprinting techniques for protecting intellectual property, in IEEE Custom Integrated Circuits Conference (1998), pp. 299–302

    Google Scholar 

  20. M. Yasin, B. Mazumdar, O. Sinanoglu, J. Rajendran, Security analysis of anti-SAT, in IEEE Asia and South Pacific Design Automation Conference (2017), pp. 342–347

    Google Scholar 

  21. J. Wang, C. Shi, A. Sanabria-Borbon, E. Sanchez-Sinencio, J. Hu, Thwarting analog IC piracy via combinational locking, in IEEE International Test Conference (2017), pp. 1–10

    Google Scholar 

  22. V.V. Rao, I. Savidis, Parameter biasing obfuscation for analog IP protection, in IEEE Latin American Test Symposium (2017), pp. 1–6

    Google Scholar 

  23. D.H.K. Hoe, J. Rajendran, R. Karri, Towards secure analog designs: a secure sense amplifier using memristors, in IEEE Computer Society Annual Symposium on VLSI (2014), pp. 516–521

    Google Scholar 

  24. K. Juretus, V. Venugopal Rao, I. Savidis, Securing analog mixed-signal integrated circuits through shared dependencies, in ACM Great Lakes Symposium on VLSI (2019), pp. 483–488

    Google Scholar 

  25. J. Leonhard, M. Yasin, S. Turk, M.T. Nabeel, M.-M. Louërat, R. Chotin-Avot, H. Aboushad, O. Sinanoglu, H.-G. Stratigopoulos, MixLock: securing mixed-signal circuits via logic locking, in IEEE/ACM Design Automation and Test in Europe (2019)

    Google Scholar 

  26. N.G. Jayasankaran, A.S. Borbon, E. Sanchez-Sinencio, J. Hu, J. Rajendran, Towards provably-secure analog and mixed-signal locking against overproduction, in IEEE/ACM International Conference on Computer-Aided Design (2018), pp. 7:1–7:8

    Google Scholar 

  27. A. Ash-Saki, S. Ghosh, How multi-threshold designs can protect analog IPs, in IEEE International Conference on Computer Design (2018), pp. 464–471

    Google Scholar 

  28. S.G. Rao Nimmalapudi, G. Volanis, Y. Lu, A. Antonopoulos, A. Marshall, Y. Makris, Range-controlled floating-gate transistors: a unified solution for unlocking and calibrating analog ICs, in IEEE/ACM Design Automation and Test in Europe (2020), pp. 286–289

    Google Scholar 

  29. G. Volanis, Y. Lu, S.G.R. Nimmalapudi, A. Antonopoulos, A. Marshall, Y. Makris, Analog performance locking through neural network-based biasing, in IEEE VLSI Test Symposium (2019), pp. 1–6

    Google Scholar 

  30. R. Torrance, D. James, The state-of-the-art in semiconductor reverse engineering, in IEEE/ACM Design Automation Conference (2011), pp. 333–338

    Google Scholar 

  31. C.S. Chang, C.P. Chao, J.G.J. Chern, J.Y.C. Sun, Advanced CMOS technology portfolio for RF IC applications. IEEE Trans. Electron Devices 52(7), 1324–1334 (2005)

    Article  Google Scholar 

  32. Texas Instruments, Universal active filter. https://www.ti.com/lit/ds/symlink/uaf42.pdf (2010). Accessed 25 April 2020

  33. Chipworks, Reverse engineering software. http://www.chipworks.com/en/technical-competitive-analysis/resources/reerse-engineering-software (2016)

  34. T. Iizuka, CMOS Technology Scaling and Its Implications (Cambridge University Press, Cambridge, 2015)

    Book  Google Scholar 

  35. C. Toumazou, G. Moschytz, B. Gilbert, Trade-Offs in Analog Circuit Design (Kluwer Academic Publishers, Dordrecht, 2002)

    Book  Google Scholar 

  36. J.W. Tschanz, J.T. Kao, S.G. Narendra, R. Nair, D.A. Antoniadis, A.P. Chandrakasan, V. De, “Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage. IEEE J. Solid State Circ. 37(11), 1396–1402 (2002)

    Article  Google Scholar 

  37. S. Shin, K. Kim, S. Kang, Memristor applications for programmable analog ICs. IEEE Trans. Nanotechnol. 10(2), 266–274 (2011)

    Article  Google Scholar 

  38. B. Long, J. Ordosgoitti, R. Jha, C. Melkonian, Understanding the charge transport mechanism in VRS and BRS states of transition metal oxide nanoelectronic memristor devices. IEEE Trans. Electron Devices 58(11), 3912–3919 (2011)

    Article  Google Scholar 

  39. Degate, http://www.degate.org/documentation/

  40. Berkeley Predictive Technology Model (PTM), http://ptm.asu.edu/

  41. S. Lee, C. Shi, J. Wang, A. Sanabria, H. Osman, J. Hu, E. Sánchez-Sinencio, A built-in self-test and in situ analog circuit optimization platform. IEEE Trans. Circuits Syst. Regul. Pap. PP(99), 1–14 (2018)

    Google Scholar 

  42. J. Wang, C. Shi, E. Sanchez-Sinencio, J. Hu, Built-in self optimization for variation resilience of analog filters, in IEEE Computer Society Annual Symposium on VLSI (2015), pp. 656–661

    Google Scholar 

  43. I. Guerra-Gómez, E. Tlelo-Cuautle, L.G. De La Fraga, Richardson extrapolation-based sensitivity analysis in the multi-objective optimization of analog circuits. Appl. Math. Comput. 222, 167–176 (2013)

    MATH  Google Scholar 

  44. B. Razavi, RF Microelectronics (Pearson Education, London, 2011)

    Google Scholar 

  45. M.V.V. Rolf Schaumann, Haiqiao Xiao, Design of Analog Filters (Oxford University Press, Oxford, 2009)

    Google Scholar 

  46. T. Instruments, Understanding low drop out (LDO) regulators, https://bit.ly/37bvvyE (2006). Accessed 24 Jan 2020

  47. P. Subramanyan, S. Ray, S. Malik, Evaluating the security of logic encryption algorithms, in IEEE International Symposium on Hardware Oriented Security and Trust (2015), pp. 137–143

    Google Scholar 

  48. V. Srinivasan, G.J. Serrano, J. Gray, P. Hasler, A precision CMOS amplifier using floating-gate transistors for offset cancellation. IEEE J. Solid State Circuits 42(2), 280–291 (2007)

    Article  Google Scholar 

  49. J. Leonhard, A. Sayed, M. Louërat, H. Aboushady, H. Stratigopoulos, Analog and mixed-signal IC security via sizing camouflaging, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2020), pp. 1–1

    Google Scholar 

  50. N.G. Jayasankaran, A.S. Borbon, A. Abuellil, E. Sanchez-Sinencio, J. Hu, J. Rajendran, Breaking analog locking techniques via satisfiability Modulo theories, in IEEE International Test Conference (2019)

    Google Scholar 

  51. M. Yasin, S.M. Saeed, J. Rajendran, O. Sinanoglu, Activation of logic encrypted chips: pre-test or post-test?, in IEEE/ACM Design, Automation Test in Europe (2016), pp. 139–144

    Google Scholar 

  52. A. Sanabria-Borbon, N.G. Jayasankaran, S. Lee, E. Sanchez-Sinencio, J. Hu, J. Rajendran, Schmitt trigger-based key provisioning for locking analog/RF integrated circuits, in IEEE International Test Conference (2020).

    Google Scholar 

  53. M. Yasin, B. Mazumdar, O. Sinanoglu, J. Rajendran, Removal attacks on logic locking and camouflaging techniques, in IEEE Transactions on Emerging Topics in Computing (2017), pp. 1–1

    Google Scholar 

  54. K. Azar, H. Kamali, H. Homayoun, A. Sasan, SMT attack: next generation attack on obfuscated circuits with capabilities and performance beyond the SAT attacks. IACR Trans. Cryptographic Hardw. Embed. Syst. 2019(1), 97–122 (2018)

    Article  Google Scholar 

  55. Y. Xie, A. Srivastava, Delay locking: security enhancement of logic locking against IC counterfeiting and overproduction, in IEEE/ACM Design Automation Conference (2017), pp. 1–6

    Google Scholar 

  56. F. Yang, M. Tang, O. Sinanoglu, Stripped functionality logic locking with hamming distance-based restore unit (SFLL-hd) – unlocked. IEEE Trans. Inf. Forensics Secur. 14(10), 2778–2786 (2019)

    Article  Google Scholar 

  57. D. Sirone, P. Subramanyan, Functional analysis attacks on logic locking, in IEEE/ACM Design Automation and Test in Europe (2019), pp. 936–939

    Google Scholar 

  58. N.G. Jayasankaran, A. Sanabria-Borbón, A. Abuellil, E. Sánchez-Sinencio, J. Hu, J. Rajendran, Breaking analog locking techniques, in IEEE Transactions on Very Large Scale Integration Systems (2020), pp. 1–14

    Google Scholar 

  59. R.Y. Acharya, S. Chowdhury, F. Ganji, D. Forte, Attack of the genes: finding keys and parameters of locked analog ICs using genetic algorithm (2020). arXiv:2003.13904

    Google Scholar 

  60. M. Yasin, O. Sinanoglu, Transforming between logic locking and IC camouflaging, in IEEE International Design Test Symposium (2015), pp. 1–4

    Google Scholar 

  61. K. Shamsi, M. Li, T. Meade, Z. Zhao, D.Z. Pan, Y. Jin, AppSAT: approximately deobfuscating integrated circuits, in IEEE International Symposium on Hardware Oriented Security and Trust (2017), pp. 95–100

    Google Scholar 

  62. R. Sotner, J. Jerabek, N. Herencsar, K. Vrba, T. Dostal, Features of multi-loop structures with OTAs and adjustable current amplifier for second-order multiphase/quadrature oscillators. Int. J. Electron. Commun. 69(5), 814–822 (2015)

    Article  Google Scholar 

  63. Z. Zahir, G. Banerjee, A multi-tap inductor based 2.0-4.1 GHz wideband LC-oscillator, in IEEE Asia Pacific Conference on Circuits and Systems (2016), pp. 330–333

    Google Scholar 

  64. R. Senani, D.R. Bhaskar, V.K. Singh, R.K. Sharma, Sinusoidal Oscillators and Waveform Generators using Modern Electronic Circuit Building Blocks (Springer International Publishing, Berlin, 2015)

    Google Scholar 

  65. Texas Instruments, AWR1243 Single-Chip 77-GHz and 79-GHz FMCW Transceiver, http://www.ti.com/lit/ds/symlink/awr1243.pdf (2012), Accessed 6 Jan 2020

  66. J.P. Lang, iSAT3 (2017). https://projects.informatik.uni-freiburg.de/projects/isat3/wiki/ISAT3_004. Accessed 6 Jan 2020

  67. J. Leonhard, M.-M. Louërat, H. Aboushady, O. Sinanoglu, H.-G. Stratigopoulos, Mixed-signal hardware security using MixLock: demonstration in an audio application, in IEEE International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (2019)

    Google Scholar 

Download references

Acknowledgements

This work is funded by the National Science Foundation C(CF-1815583, CNS-1618824, CNS-1828840, STARSS-1618797, and SATC CAREER-1822848), Semiconductor Research Corporation (2016-T3S-2688 and 2016-T3S-2689), and Intel. The authors thank Qualcomm and Synopsys for their support in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rajendran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jayasankaran, N.G., Sanabria-Borbón, A., Sánchez-Sinencio, E., Hu, J., Rajendran, J. (2021). Analog IP Protection and Evaluation. In: Tehranipoor, M. (eds) Emerging Topics in Hardware Security . Springer, Cham. https://doi.org/10.1007/978-3-030-64448-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64448-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64447-5

  • Online ISBN: 978-3-030-64448-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics