Skip to main content

Abstract

The choroid is the largest vascular bed in the eye and contributes a significant volume to the total intraocular volume. Changes in choroidal volume have the potential to induce a shift of the ocular pressure/volume curve. As a primarily vascular tissue, the choroid reacts to alterations in its upstream as well as downstream circulations, i.e. the arterial and venous supply. Exposure to intraocular pressure adds another determinant to choroidal behavior. This chapter summarizes the fundamental physiology of the choroid as it relates to the biomechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wybar KC. A study of the choroidal circulation of the eye in man. J Anat. 1954;88:94–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Schrödl F, Kaser-Eichberger A, Trost A, et al. Lymphatic markers in the adult human choroid. Investig Opthalmol Vis Sci. 2015;56:7406.

    Article  Google Scholar 

  3. Koina ME, Baxter L, Adamson SJ, Arfuso F, Hu P, Madigan MC, Chan-Ling T. Evidence for lymphatics in the developing and adult human choroid. Invest Ophthalmol Vis Sci. 2015;56:1310–27.

    Article  CAS  Google Scholar 

  4. Alm A, Bill A. Blood flow and oxygen extraction in the cat uvea at normal and high intraocular pressures. Acta Physiol Scand. 1970;80:19–28.

    Article  CAS  Google Scholar 

  5. Linsenmeier RA, Padnick-Silver L. Metabolic dependence of photoreceptors on the choroid in the normal and detached retina. Invest Ophthalmol Vis Sci. 2000;41:3117–23.

    CAS  PubMed  Google Scholar 

  6. Braun RD, Linsenmeier RA, Goldstick TK. Oxygen consumption in the inner and outer retina of the cat. Invest Ophthalmol Vis Sci. 1995;36:542–54.

    CAS  PubMed  Google Scholar 

  7. Schmidl D, Boltz A, Kaya S, Werkmeister R, Dragostinoff N, Lasta M, Polska E, Garhöfer G, Schmetterer L. Comparison of choroidal and optic nerve head blood flow regulation during changes in ocular perfusion pressure. Investig Opthalmol Vis Sci. 2012;53:4337.

    Article  Google Scholar 

  8. Kiel JW. Choroidal myogenic autoregulation and intraocular pressure. Exp Eye Res. 1994;58:529–43.

    Article  CAS  Google Scholar 

  9. Bogner B, Runge C, Strohmaier C, Trost A, Tockner B, Kiel JW, Schroedl F, Reitsamer HA. The effect of vasopressin on ciliary blood flow and aqueous flow. Investig Ophthalmol Vis Sci. 2014; https://doi.org/10.1167/iovs.13-13286.

  10. Reitsamer HA, Zawinka C, Branka M. Dopaminergic vasodilation in the choroidal circulation by d1/d5 receptor activation. Invest Ophthalmol Vis Sci. 2004;45:900–5.

    Article  Google Scholar 

  11. Mueller H. Ueber glatte Muskeln und Nervengeflechte der chorioidea im menschlichen Auge. Vehr Phys Ges Wurzbg. 1859;10:179–92.

    Google Scholar 

  12. Schroedl F. Neuropeptides in the eye. Trivandrum: Research Signpost; 2009.

    Google Scholar 

  13. Schroedl F, Trost A, Strohmaier C, Bogner B, Runge C, Kaser-Eichberger A, Couillard-Despres S, Aigner L, Reitsamer HA. Rat choroidal pericytes as a target of the autonomic nervous system. Cell Tissue Res. 2014; https://doi.org/10.1007/s00441-013-1769-5.

  14. Poukens V, Glasgow BJ, Demer JL. Nonvascular contractile cells in sclera and choroid of humans and monkeys. Invest Ophthalmol Vis Sci. 1998;39:1765–74.

    CAS  PubMed  Google Scholar 

  15. Goldmann H. Out-flow pressure, minute volume and resistance of the anterior chamber flow in man. Doc Ophthalmol. 1951;5–6:278–356.

    Article  Google Scholar 

  16. Friedenwald JS. Contribution to the theory and practice of tonometry. Am J Ophthalmol. 1937;20:985–1024.

    Article  Google Scholar 

  17. Silver DM, Farrel ME, Langham ME, O’Brien V, Schilder P. Esimation of pulsatile blood flow from intraocular pressure. Acta Ophthalmol. 1989;67:25–9.

    Article  Google Scholar 

  18. Eisenlohr JE, Langham ME. The relationship between pressure and volume changes in living and dead rabbit eyes. Investig Ophthalmol. 1962;1:63–77.

    CAS  Google Scholar 

  19. Eisenlohr JE, Langham ME, Maumenee AE. Manometric studies of the pressure volume relationship in living and enucleated eyes of individual human subjects. Br J Ophthalmol. 1962;46:536–48.

    Article  CAS  Google Scholar 

  20. Reitsamer HA, Kiel JW. A rabbit model to study orbital venous pressure, intraocular pressure, and ocular hemodynamics simultaneously. Invest Ophthalmol Vis Sci. 2002;43:3728–34.

    PubMed  Google Scholar 

  21. Kiel JW. The ocular circulation. San Rafael: Morgan & Claypool Life Sciences; 2010.

    Google Scholar 

  22. Mäepea O. Pressures in the anterior ciliary arteries, choroidal veins and choriocapillaris. Exp Eye Res. 1992;54:731–6.

    Article  Google Scholar 

  23. Kiel JW. The effect of arterial pressure on the ocular pressure-volume relationship in the rabbit. Exp Eye Res. 1995;60:267–78.

    Article  CAS  Google Scholar 

  24. Bayerle-Eder M, Kolodjaschna J, Wolzt M, Polska E, Gasic S, Schmetterer L. Effect of a nifedipine induced reduction in blood pressure on the association between ocular pulse amplitude and ocular fundus pulsation amplitude in systemic hypertension. Br J Ophthalmol. 2005;89:704–8.

    Article  CAS  Google Scholar 

  25. Strohmaier C, Runge C, Seyeddain O, Emesz M, Nischler C, Dexl A, Grabner G, Reitsamer HA. Profiles of intraocular pressure in human donor eyes during femtosecond laser procedures: a comparative study. Investig Ophthalmol Vis Sci. 2013; https://doi.org/10.1167/iovs.12-11155.

  26. Lavery WJ, Kiel JW. Effects of head down tilt on episcleral venous pressure in a rabbit model. Exp Eye Res. 2013;111:88–94.

    Article  CAS  Google Scholar 

  27. Kurultay-Ersan I, Emre S. Impact of valsalva maneuver on central choroid, central macula, and disk fiber layer thickness among high myopic and hyperopic patients. Eur J Ophthalmol. 2017;27:331–5.

    Article  Google Scholar 

  28. Silver DM, Farrell RA. Validity of pulsatile ocular blood flow measurements. Surv Ophthalmol. 1994;38:S72–80.

    Article  Google Scholar 

  29. Kaufmann C, Bachmann LM, Robert YC, Thiel MA. Ocular pulse amplitude in healthy subjects as measured by dynamic contour tonometry. Arch Ophthalmol. 2006;124:1104.

    Article  Google Scholar 

  30. Kaufmann C, Bachmann LM, Thiel MA. Comparison of dynamic contour tonometry with Goldmann Applanation tonometry. Investig Opthalmol Vis Sci. 2004;45:3118.

    Article  Google Scholar 

  31. Ferrara D, Waheed NK, Duker JS. Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies. Prog Retin Eye Res. 2016;52:130–55.

    Article  Google Scholar 

  32. Beaton L, Mazzaferri J, Lalonde F, Hidalgo-Aguirre M, Descovich D, Lesk MR, Costantino S. Non-invasive measurement of choroidal volume change and ocular rigidity through automated segmentation of high-speed OCT imaging. Biomed Opt Express. 2015;6:1694.

    Article  CAS  Google Scholar 

  33. Shin JW, Shin YU, Lee BR. Choroidal thickness and volume mapping by a six radial scan protocol on spectral-domain optical coherence tomography. Ophthalmology. 2012;119:1017–23.

    Article  Google Scholar 

  34. Wallman J, Wildsoet C, Xu A, Gottlieb MD, Nickla DL, Marran L, Krebs W, Christensen AM. Moving the retina: choroidal modulation of refractive state. Vis Res. 1995;35:37–50.

    Article  CAS  Google Scholar 

  35. Read SA, Collins MJ, Sander BP. Human optical axial length and defocus. Investig Opthalmol Vis Sci. 2010;51:6262.

    Article  Google Scholar 

  36. Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29:144–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Strohmaier, C.A., Reitsamer, H.A. (2021). Choroidal Biomechanics. In: Pallikaris, I., Tsilimbaris, M.K., Dastiridou, A.I. (eds) Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye. Springer, Cham. https://doi.org/10.1007/978-3-030-64422-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64422-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64421-5

  • Online ISBN: 978-3-030-64422-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics