Skip to main content

Basic Engineering Concepts and Terminology Underlying Ocular Rigidity

  • Chapter
  • First Online:
Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye

Abstract

This chapter outlines basic concepts for quantifying, understanding and comparing mechanical forces and material properties, with a particular emphasis on the relevance of these concepts to ocular biomechanics. We introduce the concepts of stress, strain, elastic modulus, and viscoelasticity. Additionally, we examine several simple equations used to describe the mechanical environment of the eye at an organ level. We conclude with a discussion of the ways in which cells perceive and respond to their mechanical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fung YC. Biomechanics: mechanical properties of living tissues. 2nd ed. New York: Springer; 1993. p. xviii.

    Book  Google Scholar 

  2. Timoshenko S, Goodier JN. Theory of elasticity. 3rd ed. New York: McGraw-Hill; 1969. p. xxiv.

    Google Scholar 

  3. Wang C-T. Applied elasticity. New York: McGraw-Hill; 1953. p. 357.

    Google Scholar 

  4. Humphrey JD. Cardiovascular solid mechanics: cells, tissues, and organs. New York: Springer; 2002. p. xvi.

    Book  Google Scholar 

  5. Holzapfel GA. Nonlinear solid mechanics: a continuum approach for engineering. Chichester; New York: Wiley; 2000. p. xiv.

    Google Scholar 

  6. Downs JC, Roberts MD, Burgoyne CF. Mechanical environment of the optic nerve head in glaucoma. Optom Vis Sci. 2008;85(6):425–35. https://doi.org/10.1097/OPX.0b013e31817841cb.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kling S, Remon L, Perez-Escudero A, Merayo-Lloves J, Marcos S. Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments. Invest Ophthalmol Vis Sci. 2010;51(8):3961–8. https://doi.org/10.1167/iovs.09-4536.

    Article  PubMed  Google Scholar 

  8. Coudrillier B, Boote C, Quigley HA, Nguyen TD. Scleral anisotropy and its effects on the mechanical response of the optic nerve head. Biomech Model Mechanobiol. 2013;12(5):941–63. https://doi.org/10.1007/s10237-012-0455-y.

    Article  PubMed  Google Scholar 

  9. Coudrillier B, Pijanka J, Jefferys J, Sorensen T, Quigley HA, Boote C, Nguyen TD. Collagen structure and mechanical properties of the human sclera: analysis for the effects of age. J Biomech Eng. 2015;137(4):041006. https://doi.org/10.1115/1.4029430.

    Article  PubMed  Google Scholar 

  10. Freed AD, Doehring TC. Elastic model for crimped collagen fibrils. J Biomech Eng. 2005;127(4):587–93.

    Article  Google Scholar 

  11. Ho LC, Sigal IA, Jan NJ, Squires A, Tse Z, Wu EX, Kim SG, Schuman JS, Chan KC. Magic angle-enhanced MRI of fibrous microstructures in sclera and cornea with and without intraocular pressure loading. Invest Ophthalmol Vis Sci. 2014;55(9):5662–72. https://doi.org/10.1167/iovs.14-14561.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jan NJ, Gomez C, Moed S, Voorhees AP, Schuman JS, Bilonick RA, Sigal IA. Microstructural crimp of the lamina cribrosa and peripapillary sclera collagen fibers. Invest Ophthalmol Vis Sci. 2017;58(9):3378–88. https://doi.org/10.1167/iovs.17-21811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jan NJ, Grimm JL, Tran H, Lathrop KL, Wollstein G, Bilonick RA, Ishikawa H, Kagemann L, Schuman JS, Sigal IA. Polarization microscopy for characterizing fiber orientation of ocular tissues. Biomed Opt Express. 2015;6(12):4705–18. https://doi.org/10.1364/BOE.6.004705.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jan NJ, Lathrop K, Sigal IA. Collagen architecture of the posterior pole: high-resolution wide field of view visualization and analysis using polarized light microscopy. Invest Ophthalmol Vis Sci. 2017;58(2):735–44. https://doi.org/10.1167/iovs.16-20772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grytz R, Meschke G, Jonas JB. The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach. Biomech Model Mechanobiol. 2011;10(3):371–82. https://doi.org/10.1007/s10237-010-0240-8.

    Article  PubMed  Google Scholar 

  16. Jan NJ, Sigal IA. Collagen fiber recruitment: a microstructural basis for the nonlinear response of the posterior pole of the eye to increases in intraocular pressure. Acta Biomater. 2018;72:295–305. https://doi.org/10.1016/j.actbio.2018.03.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meek KM. The cornea and sclera. In: Fratzl P, editor. Collagen: structure and mechanics. Boston, MA: Springer; 2008. p. 359–96. https://doi.org/10.1007/978-0-387-73906-9_13.

    Chapter  Google Scholar 

  18. Holzapfel GA, Gasser TC. A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng. 2001;190(34):4379–403. https://doi.org/10.1016/S0045-7825(00)00323-6.

    Article  Google Scholar 

  19. Avila MY, Carre DA, Stone RA, Civan MM. Reliable measurement of mouse intraocular pressure by a servo-null micropipette system. Invest Ophthalmol Vis Sci. 2001;42(8):1841–6.

    CAS  PubMed  Google Scholar 

  20. Coudrillier B, Geraldes DM, Vo NT, Atwood R, Reinhard C, Campbell IC, Raji Y, Albon J, Abel RL, Ethier CR. Phase-contrast micro-computed tomography measurements of the intraocular pressure-induced deformation of the porcine Lamina Cribrosa. IEEE Trans Med Imaging. 2016;35(4):988–99. https://doi.org/10.1109/TMI.2015.2504440.

    Article  PubMed  Google Scholar 

  21. Asrani S, Zeimer R, Wilensky J, Gieser D, Vitale S, Lindenmuth K. Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J Glaucoma. 2000;9(2):134–42.

    Article  CAS  Google Scholar 

  22. Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Predicted extension, compression and shearing of optic nerve head tissues. Exp Eye Res. 2007;85(3):312–22. https://doi.org/10.1016/j.exer.2007.05.005.

    Article  CAS  PubMed  Google Scholar 

  23. Stockslager MA, Samuels BC, Allingham RR, Klesmith ZA, Schwaner SA, Forest CR, Ethier CR. System for rapid, precise modulation of intraocular pressure, toward minimally-invasive in vivo measurement of intracranial pressure. PLoS One. 2016;11(1):e0147020. https://doi.org/10.1371/journal.pone.0147020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schwaner SA, Sherwood JM, Snider E, Geisert EE, Overby DR, Ethier CR. Ocular compliance in mice. Invest Ophth Vis Sci. 2015;56(7):6143.

    Google Scholar 

  25. Madekurozwa M, Reina-Torres E, Overby DR, Sherwood JM. Direct measurement of pressure-independent aqueous humour flow using iPerfusion. Exp Eye Res. 2017;162:129–38. https://doi.org/10.1016/j.exer.2017.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lei Y, Overby DR, Boussommier-Calleja A, Stamer WD, Ethier CR. Outflow physiology of the mouse eye: pressure dependence and washout. Invest Ophthalmol Vis Sci. 2011;52(3):1865–71. https://doi.org/10.1167/iovs.10-6019.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Friedenwald JS. Contribution to the theory and practice of tonometry. Am J Ophthalmol. 1937;20(10):985–1024. https://doi.org/10.1016/S0002-9394(37)90425-2.

    Article  Google Scholar 

  28. Roark RJ, Young WC, Budynas RG, Sadegh AM. Roark’s formulas for stress and strain. 8th ed. New York: McGraw-Hill; 2012. p. xviii.

    Google Scholar 

  29. Norman RE, Flanagan JG, Sigal IA, Rausch SM, Tertinegg I, Ethier CR. Finite element modeling of the human sclera: influence on optic nerve head biomechanics and connections with glaucoma. Exp Eye Res. 2011;93(1):4–12. https://doi.org/10.1016/j.exer.2010.09.014.

    Article  CAS  PubMed  Google Scholar 

  30. Chung CW, Girard MJ, Jan NJ, Sigal IA. Use and misuse of Laplace’s law in ophthalmology. Invest Ophthalmol Vis Sci. 2016;57(1):236–45. https://doi.org/10.1167/iovs.15-18053.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zienkiewicz OC, Taylor RL, Zhu JZ. The finite element method: its basis and fundamentals. 7th ed. Amsterdam: Elsevier, Butterworth-Heinemann; 2013. p. xxxviii.

    Google Scholar 

  32. Sigal IA, Ethier CR. Biomechanics of the optic nerve head. Exp Eye Res. 2009;88(4):799–807. https://doi.org/10.1016/j.exer.2009.02.003.

    Article  CAS  PubMed  Google Scholar 

  33. Nguyen TD, Ethier CR. Biomechanical assessment in models of glaucomatous optic neuropathy. Exp Eye Res. 2015;141:125–38. https://doi.org/10.1016/j.exer.2015.05.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Myers KM, Cone FE, Quigley HA, Gelman S, Pease ME, Nguyen TD. The in vitro inflation response of mouse sclera. Exp Eye Res. 2010;91(6):866–75. https://doi.org/10.1016/j.exer.2010.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boyce BL, Grazier JM, Jones RE, Nguyen TD. Full-field deformation of bovine cornea under constrained inflation conditions. Biomaterials. 2008;29(28):3896–904. https://doi.org/10.1016/j.biomaterials.2008.06.011.

    Article  CAS  PubMed  Google Scholar 

  36. Coudrillier B, Tian J, Alexander S, Myers KM, Quigley HA, Nguyen TD. Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Invest Ophth Vis Sci. 2012;53(4):1714–28. https://doi.org/10.1167/iovs.11-8009.

    Article  Google Scholar 

  37. Campbell IC, Hannon BG, Read AT, Sherwood JM, Schwaner SA, Ethier CR. Correction to ‘Quantification of the efficacy of collagen cross-linking agents to induce stiffening of rat sclera’. J R Soc Interface. 2017;14(130) https://doi.org/10.1098/rsif.2017.0312.

  38. Ingber DE. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 2006;20(7):811–27. https://doi.org/10.1096/fj.05-5424rev.

    Article  CAS  PubMed  Google Scholar 

  39. Morgan JT, Murphy CJ, Russell P. What do mechanotransduction, Hippo, Wnt, and TGFbeta have in common? YAP and TAZ as key orchestrating molecules in ocular health and disease. Exp Eye Res. 2013;115:1–12. https://doi.org/10.1016/j.exer.2013.06.012.

    Article  CAS  PubMed  Google Scholar 

  40. Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nat Rev Mol Cell Biol. 2009;10(1):63–73. https://doi.org/10.1038/nrm2597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hernandez MR. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res. 2000;19(3):297–321. https://doi.org/10.1016/S1350-9462(99)00017-8.

    Article  CAS  PubMed  Google Scholar 

  42. Cui W, Bryant MR, Sweet PM, McDonnell PJ. Changes in gene expression in response to mechanical strain in human scleral fibroblasts. Exp Eye Res. 2004;78(2):275–84.

    Article  CAS  Google Scholar 

  43. Tumminia SJ, Mitton KP, Arora J, Zelenka P, Epstein DL, Russell P. Mechanical stretch alters the actin cytoskeletal network and signal transduction in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 1998;39(8):1361–71.

    CAS  PubMed  Google Scholar 

  44. Nowell CS, Odermatt PD, Azzolin L, Hohnel S, Wagner EF, Fantner GE, Lutolf MP, Barrandon Y, Piccolo S, Radtke F. Chronic inflammation imposes aberrant cell fate in regenerating epithelia through mechanotransduction. Nat Cell Biol. 2016;18(2):168–80. https://doi.org/10.1038/ncb3290.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ross Ethier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boazak, E.M., Ethier, C.R. (2021). Basic Engineering Concepts and Terminology Underlying Ocular Rigidity. In: Pallikaris, I., Tsilimbaris, M.K., Dastiridou, A.I. (eds) Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye. Springer, Cham. https://doi.org/10.1007/978-3-030-64422-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64422-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64421-5

  • Online ISBN: 978-3-030-64422-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics