Skip to main content

Biotechnological Approaches in Maintenance of a Healthy Immune System for Protection Against Diseases

  • Chapter
  • First Online:
Nanotechnology Applications in Health and Environmental Sciences

Abstract

The immune system is the primary defense mechanism to protect the body from harmful environment and diseases such as infectious diseases and cancer. Therefore, it is very important that the immune system must work very effectively and strongly. The recent treatment methods developed for modulation of the immune system in an effective defense against diseases include many products of biotechnology. In fact, biotechnological approaches for the new generation immunotherapies are becoming quite innovative novel era. In this chapter, biotechnology products of vaccines and therapeutic monoclonal antibodies, and their applications will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ada G (1997) Overview of vaccines. Mol Biotechnol 8:123–134

    Article  CAS  Google Scholar 

  • Almagro JC, Pedraza-Escalona M, Arrieta HI, Pérez-Tapia SM (2019) Phage display libraries for antibody therapeutic discovery and development. Antibodies (Basel) 8(3). pii: E44

    Google Scholar 

  • Bagriacik EU (2017) Antigen presenting cell therapies: dendritic cell-based tumor vaccines. Turk Klinikleri J Med Oncol Spec Top 10(2):206–210

    Google Scholar 

  • Barrett ADT (2017) Yellow fever live attenuated vaccine: a very successful live attenuated vaccine but still we have problems controlling the disease. Vaccine 35:5951–5955

    Article  Google Scholar 

  • Bartlett BL, Pellicane AJ, Tyring SK (2009) Vaccine immunology. Dermatol Ther 22(2):104–109

    Article  Google Scholar 

  • Betáková T, Svetlíková D, Gocník M (2013) Overview of measles and mumps vaccine: origin, present, and future of vaccine production. Acta Virol 57:91–96

    Article  Google Scholar 

  • Bizzini B (1979) Tetanus toxin. Microbiol Rev 43:224–240

    Article  CAS  Google Scholar 

  • Brüggemann M, Osborn MJ, Ma B, Hayre J, Avis S, Lundstrom B, Buelow R (2015) Human antibody production in transgenic animals. Arch Immunol Ther Exp 63:101–108

    Article  Google Scholar 

  • Burke RM, Tate JE, Kirkwood CD, Steele AD, Parashar UD (2019) Current and new rotavirus vaccines. Curr Opin Infect Dis 32:435–444

    Article  CAS  Google Scholar 

  • Carter H, Campbell H (1993) Rational use of measles, mumps and rubella (MMR) vaccine. Drugs 45:677–683

    Article  CAS  Google Scholar 

  • Chung Y-J, Jung M-Y, Lee J-A, Kim T-Y, Choe Y-K, Kim I-H (2016) Tetanus toxin production from Clostridium tetani, using a casein-based medium in a single-use bioreactor. Biotechnol Bioprocess Eng 21:531–536

    Article  CAS  Google Scholar 

  • Coursaget P, Bringer L, Sarr G, Bourdil C, Fritzell B, Blondeau C, Yvonnet B, Chiron JP, Jeannée E, Guindo S et al (1992) Comparative immunogenicity in children of mammalian cell-derived recombinant hepatitis B vaccine and plasma-derived hepatitis B vaccine. Vaccine 10:379–382

    Article  CAS  Google Scholar 

  • Dahl O, Brydøy M (2018) The pioneers behind immune checkpoint blockers awarded the Nobel Prize in physiology or medicine 2018. Acta Oncol 58:1–8

    Article  Google Scholar 

  • Deering RP, Kommareddy S, Ulmer JB, Brito LA, Geall AJ (2014) Nucleic acid vaccines: prospects for non-viral delivery of mRNA vaccines. Expert Opin Drug Deliv 11:885–899

    Article  CAS  Google Scholar 

  • Dorner F, Barrett PN (1999) Vaccine technology: looking to the future. Ann Med 31:51–60

    Article  CAS  Google Scholar 

  • Feldman C, Anderson R (2014) Review: current and new generation pneumococcal vaccines. J Infect 69(4):309–325

    Article  Google Scholar 

  • Gatti-Mays ME, Redman JM, Collins JM, Bilusic M (2017) Cancer vaccines: enhanced immunogenic modulation through therapeutic combinations. Hum Vaccin Immunother 13:2561–2574

    Article  Google Scholar 

  • Glyn I, Glyn J (2004) The life and death of smallpox. Cambridge University Press, New York, p 269. ISBN: 0 521 84542 4

    Google Scholar 

  • Grilo AL, Mantalaris A (2019) The increasingly human and profitable monoclonal antibody market. Trends Biotechnol 37:9–16

    Article  CAS  Google Scholar 

  • Hannoun C (2013) The evolving history of influenza viruses and influenza vaccines. Expert Rev Vaccines 12:1085–1094

    Article  CAS  Google Scholar 

  • Hawken J, Troy SB (2012) Adjuvants and inactivated polio vaccine: a systematic review. Vaccine 30:6971–6979

    Article  CAS  Google Scholar 

  • Hicks DJ, Fooks AR, Johnson N (2012) Developments in rabies vaccines. Clin Exp Immunol 169:199–204

    Article  CAS  Google Scholar 

  • Kapil P, Merkel TJ (2019) Pertussis vaccines and protective immunity. Curr Opin Immunol 59:72–78

    Article  CAS  Google Scholar 

  • Knuf M, Faber J, Barth I, Habermehl P (2008) A combination vaccine against measles, mumps, rubella and varicella. Drugs Today (Barc) 44:279–292

    Article  Google Scholar 

  • Leclerc C (2003) New approaches in vaccine development. Comp Immunol Microbiol Infect Dis 26:329–341

    Article  Google Scholar 

  • Maynard J, Georgiou G (2000) Antibody engineering. Annu Rev Biomed Eng 2:339–376

    Article  CAS  Google Scholar 

  • Nothdurft HD (2008) Hepatitis A vaccines. Expert Rev Vaccines 7:535–545

    Article  CAS  Google Scholar 

  • Petrosky E, Bocchini JA Jr, Hariri S, Chesson H, Curtis CR, Saraiya M et al (2015) Use of 9-valent human papillomavirus (HPV) vaccine: updated HPV vaccination recommendations of the advisory committee on immunization practices. MMWR Morb Mortal Wkly Rep 64:300–304

    PubMed  PubMed Central  Google Scholar 

  • Rapley R (1995) The biotechnology and applications of antibody engineering. Mol Biotechnol 3(2):139–154

    Article  CAS  Google Scholar 

  • Relyveld EH (1980) Current developments in production and testing of tetanus and diphtheria vaccines. Prog Clin Biol Res 47:51–76

    CAS  PubMed  Google Scholar 

  • Rossetto O, Scorzeto M, Megighian A, Montecucco C (2013) Tetanus neurotoxin. Toxicon 66:59–63

    Article  CAS  Google Scholar 

  • Shim H (2016) Therapeutic antibodies by phage display. Curr Pharm Des 22:6538–6559

    Article  CAS  Google Scholar 

  • Thomas S, Prendergast GC (2016) Cancer vaccines: a brief overview. Methods Mol Biol 1403:755–761

    Article  Google Scholar 

  • Vitek CR, Wharton M (2008) Diphtheria toxoid. In: Plotkin SA, Orenstein WA, Offit PA (eds) Vaccines. Saunders/Elsevier, Philadelphia, pp 139–156

    Chapter  Google Scholar 

  • Wang M, Jiang S, Wang Y (2016) Recent advances in the production of recombinant subunit vaccines in Pichia pastoris. Bioengineered 7:155–165

    Article  CAS  Google Scholar 

  • Wang S, Tafalla M, Hanssens L, Dolhain J (2017) A review of Haemophilus influenzae disease in Europe from 2000-2014: challenges, successes and the contribution of hexavalent combination vaccines. Expert Rev Vaccines 16:1095–1105

    Article  CAS  Google Scholar 

  • Warren-Gash C, Forbes H, Breuer J (2017) Varicella and herpes zoster vaccine development: lessons learned. Expert Rev Vaccines 16:1191–1201

    Article  CAS  Google Scholar 

  • Wirz M, Gentili G, Collotti C (1990) Tetanus vaccine: present status. Adv Biotechnol Process 13:35–55

    CAS  Google Scholar 

  • Zughaier SM (2017) Analysis of novel meningococcal vaccine formulations. Hum Vaccin Immunother 13:1728–1732

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emin Umit Bagriacik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bagriacik, E.U. (2021). Biotechnological Approaches in Maintenance of a Healthy Immune System for Protection Against Diseases. In: Saglam, N., Korkusuz, F., Prasad, R. (eds) Nanotechnology Applications in Health and Environmental Sciences. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-64410-9_15

Download citation

Publish with us

Policies and ethics