Skip to main content

Hydration and Nutrition in Athletes

  • Chapter
  • First Online:
Essential Sports Medicine
  • 1120 Accesses

Abstract

The need to maximize hydration and nutrition is valuable in athletes at all levels, from the weekend warrior to the elite professional athlete. Sports nutrition-associated issues, such as fatigue, loss of strength and stamina, and loss of speed, can negatively affect athletic performance. There is significant science dedicated to the optimal distribution of nutrients and fluids, based on exercise of various intensities and durations. This includes pre-exercise, during exercise, and post-exercise/recovery energy requirements. It is imperative the sports medicine physician, team physician, coach, and athlete understand the distribution of the energy substrates and proper fluid intake. Adequate food and fluid consumed by the athlete will maximize exercise performance and improve recovery time. Knowledge and education for the athlete regarding proper hydration and nutrition will also protect an athlete from serious detrimental effects, including dehydration, heat stroke, hyponatremia, and even death. This chapter reviews the principles for nutritional management for athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sawka MN, Coyle EF. Influence of body water and blood volume on thermoregulation and exercise performance in the heat. Exerc Sport Sci Rev. 1999;27:167–218.

    CAS  PubMed  Google Scholar 

  2. Armstrong LE, Maresh CM. The exertional heat illnesses: a risk of athletic participation. Med Exerc Nutr Health. 1993;2:125–34.

    Google Scholar 

  3. Sawka MN, Young AJ, Francesconi RP, Muza SR, Pandolf KF. Thermoregulatory and blood responses during exercise at graded hypohydrations levels. J Appl Physiol. 1985;59:1394–401.

    Article  CAS  PubMed  Google Scholar 

  4. Montain SJ, Coyle EF. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J Appl Physiol. 1992;73:1340–50.

    Article  CAS  PubMed  Google Scholar 

  5. Cadarette BS, Sawka MN, Toner MN, Pandolf KB. Aerobic fitness and the hypohydration response to exercise heat -stress. Aviat Space Environ Med. 1984;55:507–12.

    CAS  PubMed  Google Scholar 

  6. Bosco JS, Greenleaf JE, Bernauer EM, Card DH. Effects of acute dehydration and starvation on muscular strength and endurance. Acta Physiol Pol. 1974;25:411–21.

    CAS  PubMed  Google Scholar 

  7. Bosco JS, Terjurn RL, Greenleaf JE. Effects of progressive hypohydration on maximal isometric muscular strength. J Sports Med Phys Fitness. 1968;8:81–6.

    CAS  PubMed  Google Scholar 

  8. Houston ME, Marrin DA, Green HJ, Thomson JA. The effect of rapid weight loss on physiological function in wrestlers. Phys Sportsmed. 1981;9(11):73–8.

    Article  CAS  PubMed  Google Scholar 

  9. Webster S, Rutt R, Weltman A. Physiological effects of a weight loss regimen practice by college wrestlers. Med Sci Sports Exerc. 1990;22:229–34.

    CAS  PubMed  Google Scholar 

  10. Rehrer NJ. Factors influencing fluid bioavailability. Aust J Nutr Diet. 1996;53(Suppl. 4):S8–S12.

    Google Scholar 

  11. Gonzalez-Alonso J, Mora-Rodriguez R, Below PR, Coyle EF. Dehydration markedly impairs cardiovascular function in hyperthermic endurance athletes during exercise. J Appl Physiol. 1997;82:1229–36.

    Article  CAS  PubMed  Google Scholar 

  12. Rowell LB. Human circulation regulation during physiological stress. New York: Oxford University Press; 1986.

    Google Scholar 

  13. Coyle EF, Montain SJ. Thermal and cardiovascular responses to fluid replacement during exercise. In: Gisolfi CV, Lamb DR, Nadel ER, editors. Exercise, heat, and thermoregulation. Dubuque: Broan and Benchmark; 1993. p. 179–212.

    Google Scholar 

  14. Sawka MN. Physiological consequences of hypohydration: exercise performance thermoregulation. Med Sci Sports Exerc. 1992;24:657–70.

    Article  CAS  PubMed  Google Scholar 

  15. Gonzalez-Alonso J, Mora-Rodriguez R, Below PR, Coyle EF. Dehydration reduces cardiac output and increase systemic and cutaneous vascular resistance during exercise. J Appl Physiol. 1995;79:1487–96.

    Article  CAS  PubMed  Google Scholar 

  16. Saltin B. Circulatory response to submaximal and maximal exercise after thermal dehydration. J Appl Physiol. 1964;19:1125–32.

    Article  CAS  PubMed  Google Scholar 

  17. Sproles CB, Smith DP, Byrd RJ, Allen TE. Circulatory responses to submaximal exercise after dehydration and rehydration. J Sports Med. 1976;16:98–105.

    CAS  Google Scholar 

  18. Bergeron M. Averting muscle cramps. Phys Sportsmed. 2002;30(11):14.

    Article  Google Scholar 

  19. American College of Sports Medicine, Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;29:277–90.

    Google Scholar 

  20. Hargreaves M. Physiological benefits of fluid and energy replacement during exercise. Aust J Nutr Diet. 1996;53(Suppl. 4):S3–7.

    Google Scholar 

  21. Burke LM. Rehydration strategies before and after exercise. Aust J Nutr Diet. 1996;53(Suppl. 4):S22–6.

    Google Scholar 

  22. Nadel ER, Mack GW, Nose H. Influence of fluid replacement beverages on body fluid homeostasis during exercise and recovery. In: Gisolfi CV, Lamb DR, editors. Perspectives in exercise science and sports medicine, Fluid homeostasis during exercise, vol. 3. Carmel: Benchmark Press; 1990. p. 181–205.

    Google Scholar 

  23. Kristal-Boneh E, Glusman JG, Shitrit R, Chaemovitz C, Cassuto Y. Physical performance and heat tolerance after chronic water loading and heat acclimation. Aviat Space Environ Med. 1995;66:733–8.

    CAS  PubMed  Google Scholar 

  24. Dm L, Lewis PR, Richards DAB, Richards R, Bauman AE, Sutton JR, et al. Heat exhaustion in the Sun-Herald city to surf fun run. Med J Aust. 1994;161:361–5.

    Article  Google Scholar 

  25. Institute of Medicine. Fluid replacement and heat stress. Washington, DC: National Academies Press; 1994.

    Google Scholar 

  26. Armstrong LE, Maresh CM. Fluid replacement during exercise and recovery from exercise. In: Buskirk ER, Puhl SM, editors. Body fluid balance: exercise and sport. New York: CRC Press; 1996. p. 259–81.

    Google Scholar 

  27. Hawley JA, Dennis SC, Noakes TD. Carbohydrate, fluid, and electrolyte requirements of the soccer player: a review. Int J Sports Nutr. 1994;4:221–36.

    Article  CAS  Google Scholar 

  28. Maughan RF, Leiper JB, Shirreffs SM. Rehydration and recovery after exercise. Sports Sci Exchange. 1996;9:3.

    Google Scholar 

  29. Maughan RJ, Leiper JB, Shirreffs SM. Factors influencing the restoration of fluid and electrolyte after exercise in the heat. Br J Sports Med. 1997;31:175–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maughan RJ, Shirreffs SM. Recovery from prolonged exercise: restoration of water and electrolyte balance. J Sports Sci. 1997;15:297–303.

    Article  CAS  PubMed  Google Scholar 

  31. Gonzalez-Alonso J, Heaps CL, Coyle EF. Rehydration after exercise with common beverages and water. Int J Sports Med. 1992;13:399–406.

    Article  CAS  PubMed  Google Scholar 

  32. Institute of Medicine. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. Food and Nutrition Boards. Washington, DC: National Academies Press; 2005.

    Google Scholar 

  33. Burke LM, Kiens B, Ivy JL. Carbohydrate and fat for training and recovery. J Sports Sci. 2004;22:15–30.

    Article  PubMed  Google Scholar 

  34. Otten J, Hellwig J, Meyers L, editors. Dietary reference intakes: the essential guide to nutrient requirements. Washington, DC: The National Academies Press; 2006.

    Google Scholar 

  35. Ivy JL, Res PT, Sprague RC, Widzer MO. Effect of a carbohydrate-protein supplement on endurance performance during exercise of varying intensity. Int J Sport Nutr Exerc Metab. 2003;13:382–95.

    Article  CAS  PubMed  Google Scholar 

  36. Van Exxen M, Gibala MJ. Failure of protein to improve time trial performance when added to a sports drink. Med Sci Sports Exerc. 2006;38:1476–83.

    Article  CAS  Google Scholar 

  37. Driskell J. Summary: vitamins and trace elements in sports nutrition. In: Driskell J, Wolinsky I, editors. Sports nutrition. Vitamins and trace elements. New York: CRC/Taylor & Francis; 2006. p. 323–31.

    Google Scholar 

  38. Lukaski HC. Vitamin and mineral status: effects on physical performance. Nutrition. 2004;20:632–44.

    Article  CAS  PubMed  Google Scholar 

  39. Woolf K, Manore MM. B-vitamins and exercise: does exercise alter requirements? Int J Sport Nutr Exerc Metab. 2006;16:453–84.

    Article  CAS  PubMed  Google Scholar 

  40. Powers SK, DeRuisseau KC, Quindry J, Hamilton KL. Dietary antioxidants and exercise. J Sports Sci. 2004;22:81–94.

    Article  PubMed  Google Scholar 

  41. Volpe S. Vitamins, minerals and exercise. In: Dunford M, editor. Sports nutrition: a practice manual for professionals. Chicago: American Dietetic Association; 2006. p. 61–3.

    Google Scholar 

  42. Institute of Medicine. Dietary reference intakes for thiamine, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, DC: National Academies Press; 2000.

    Google Scholar 

  43. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81.

    Article  CAS  PubMed  Google Scholar 

  44. Nakagawa K. Effect of vitamin D on the nervous system and the skeletal muscle. Clin Calcium. 2006;16:1182–7.

    CAS  PubMed  Google Scholar 

  45. Institute of Medicine. Dietary reference intakes for calcium, phosphorous, magnesium, vitamin D, and fluoride. Washington, DC: The National Academies Press; 1997.

    Google Scholar 

  46. Vieth R, Bischoff-Ferrari H, Boucher BJ, et al. The urgent need to recommend an intake of vitamin D that is effective. Am J Clin Nutr. 2007;85:649–50.

    Article  CAS  PubMed  Google Scholar 

  47. Willis KS, Peterson NJ, Larson-Meyer DE. Should we be concerned about the vitamin D status of athletes? Int J Sport Nutr Exerc Metab. 2008;18:204–24.

    Article  CAS  PubMed  Google Scholar 

  48. Institute of Medicine. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: The National Academies Press; 2001.

    Google Scholar 

  49. Whiting SJ, Barabash WA. Dietary reference intakes for the micronutrients: considerations for physical activity. Appl Physiol Nutr Metab. 2006;31:80–5.

    Article  CAS  PubMed  Google Scholar 

  50. Haymes E. Iron. In: Driskell J, Wolinsky I, editors. Sports nutrition. Vitamins and trace elements. New York: CRC/Taylor & Francis; 2006. p. 203–16.

    Google Scholar 

  51. Brownlie T, Utermoheln V, Hinton PS, Haas JD. Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. Am J Clin Nutr. 2004;79:437–43.

    Article  CAS  PubMed  Google Scholar 

  52. Conwell BS, Rosenbloom CA, Skinner R, Summers SH. Policies on screening female athletes for iron deficiency in NCAA division I-A institutions. Int J Sport Nutr Exerc Metab. 2003;13:277–85.

    Article  Google Scholar 

  53. Harkey MR, Henderson FL, Gerschwin ME, Stern JS, Hackman RM. Variability in commercial ginseng products: an analysis of 25 preparations. Am J Clin Nutr. 2001;73:1101–6.

    Article  CAS  PubMed  Google Scholar 

  54. Krieder RB, Melton C, Rasmussen CJ, et al. Long-term creatine supplementation does not significantly affect clinical markers of health in athletes. Mol Cell Biochem. 2003;244:95–104.

    Article  Google Scholar 

  55. Mayhew D, Mayhew JL, Ware JS. Effects of long-term creatine supplementation on liver and kidney functions in American college football players. Int J Sport Nutr Exerc Metab. 2002;12:453–60.

    Article  CAS  PubMed  Google Scholar 

  56. Poortmans JR, Francaux M. Adverse effects of creatine supplementation: fact or fiction? Sports Med. 2000;30:155–70.

    Article  CAS  PubMed  Google Scholar 

  57. Nissen S, Sharp R, Ray M, Rathmacher JA, Rice D, Fuller JC, Connelly AS, Abumrad N. Effect of leucine metabolite b-hydroxy-b-methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol. 1996;81(5):2095–104.

    Article  CAS  PubMed  Google Scholar 

  58. Wilson GJ, Wilson JM, Manninen AH. Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex and training experience: a review. Nutr Metab. 2008;5:1.

    Article  CAS  Google Scholar 

  59. Wilson JM, Rathmacher JA, et al. The effects of 12 weeks of beta-hydroxy-beta-methylbutyrate free acid supplementation on muscle mass, strength, and power in resistance-trained individuals: a randomized, double-blind, placebo-controlled study. Eur J Appl Physiol. 2014;114(6):1217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nissen S, Sharp R, Panton L, Vukovich M, Trappe S, Fuller JC. Beta-hydroxy-beta-methylbutyrate (HMB) supplementation is humans is safe and may decrease cardiovascular risk factors. J Nutr. 2000;130(8):1937–45.

    Article  CAS  PubMed  Google Scholar 

  61. Dunford M, Smith M. Dietary supplements and ergogenic aids. In: Dunford M, editor. Sports nutrition: a practice manual for professionals. Chicago: American Dietetic Association; 2006. p. 116–41.

    Google Scholar 

  62. Graham T, Moissey L. Caffeine, creatine and food-drug synergy: ergogenics and applications to human health. In: Thompson L, Ward W, editors. Food drug synergy and safety. Boca Raton: CRC Press; 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karie Zach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zach, K. (2021). Hydration and Nutrition in Athletes. In: Miranda-Comas, G., Cooper, G., Herrera, J., Curtis, S. (eds) Essential Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-64316-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64316-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64315-7

  • Online ISBN: 978-3-030-64316-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics