Abstract
A rising trend can be observed in robot development towards the usage of flexible materials, whose properties resemble their biological counterparts. This way of design promises machines that are more adaptive, energy efficient and cost effective. One of the biggest challenges in this growing research field is the fabrication of functional elements, which consist of several embedded materials. The lack of compatible substances and of a proper prototyping technology limits the possible complexity and the degree of automation in prototyping. Furthermore, additive manufacturing techniques are usually designed for predefined purposes and do not have the customizability the research in an innovative field requires. In order to address this problem a novel multi-material 3D-printer with on-demand tool change has been developed. The adaptive locking mechanism in combination with a kinematic coupling allows the device to switch between tools varying in the dispensed material and even work principle. Using specifically developed directly driven filament-print-heads, a series of test specimen has been fabricated. The very reliable and precise extrusion, even of highly flexible material, is demonstrated in form of airtight chambers utilized as pneumatic actuators. In an additional demonstrator the flexible part has been reduced to a single expandable membrane as the active element included in an otherwise stiff housing. A specific design made it possible to embed the membrane in the surrounding, which compensated for the lack of chemical bonding between both substances and created a pneumatic actuator with a much better stability/performance ratio. These demonstrators highlight the great potential to create yet unbuilt biomimetic structures and multi-material systems with this novel multi-material printer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Coyle, S., Majidi, C., LeDuc, P., Hsia, K.J.: Bio-inspired soft robotics: material selection, actuation, and design. Extreme Mech. Lett. 22, 51–59 (2018). https://doi.org/10.1016/j.eml.2018.05.003
Gul, J.Z., et al.: 3D printing for soft robotics - a review. Sci. Technol. Adv. Mater. 19(1), 243–262 (2018). https://doi.org/10.1080/14686996.2018.1431862
Khoo, Z.X., et al.: 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys. Prototyp. 10(3), 103–122 (2015). https://doi.org/10.1080/17452759.2015.1097054
Lopes, L.R., Silva, A.F., Carneiro, O.S.: Multi-material 3D printing: the relevance of materials affinity on the boundary interface performance. Addit. Manuf. 23, 45–52 (2018). https://doi.org/10.1016/j.addma.2018.06.027
Muth, J.T., et al.: Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. (Deerfield Beach Fla.) 26(36), 6307–6312 (2014). https://doi.org/10.1002/adma.201400334
Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015). https://doi.org/10.1038/nature14543
Slocum, A.: Kinematic couplings: A review of design principles and applications. Int. J. Mach. Tools Manuf. 50(4), 310–327 (2015). https://doi.org/10.1016/j.ijmachtools.2009.10.006
Trivedi, D., Rahn, C.D., Kier, W.M., Walker, I.D.: Soft robotics: biological inspiration, state of the art, and future research. Appl. Bion. Biomech. 5(3), 99–117 (2008). https://doi.org/10.1080/11762320802557865
Zolfagharian, A., Kouzani, A.Z., Khoo, S.Y., Moghadam, A.A.A., Gibson, I., Kaynak, A.: Evolution of 3D printed soft actuators. Sens. Actuat.: Phys. 250, 258–272 (2016). https://doi.org/10.1016/j.sna.2016.09.028
Acknowledgement
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2193/1 – 390951807. SC, FE & TS are grateful to the Deutsche Forschungsgemeinschaft for the funding our research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Conrad, S., Speck, T., Tauber, F. (2020). Multi-material 3D-Printer for Rapid Prototyping of Bio-Inspired Soft Robotic Elements. In: Vouloutsi, V., Mura, A., Tauber, F., Speck, T., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2020. Lecture Notes in Computer Science(), vol 12413. Springer, Cham. https://doi.org/10.1007/978-3-030-64313-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-64313-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64312-6
Online ISBN: 978-3-030-64313-3
eBook Packages: Computer ScienceComputer Science (R0)