Skip to main content

Modeling the Dynamic Sensory Discharges of Insect Campaniform Sensilla

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2020)

Abstract

Insects monitor the forces on their legs via sensory organs called campaniform sensilla (CS) that detect cuticular strain. The afferent signals from the CS produce highly dynamic, adaptive responses to even “simple” stimuli. To better understand the advantageous properties of the system, we constructed a dynamical model that describes some of these adaptive responses. We tuned the model parameters to reproduce the response time-courses from experimental data, and found that the model could describe a variety of additional responses with these same parameter values, suggesting that the model replicates the underlying dynamics of CS afferents without overfitting to the data. In addition, our model captures several gross characteristics of CS responses: 1) Responses encode the magnitude of the applied force; 2) The peak response reflects the rate at which the force is applied; 3) The response adapts to constant applied forces; and 4) The response shows hysteresis under cyclic loading. Improved replication of CS responses to applied forces will enable a more thorough understanding of how the nervous system detects forces and controls walking, and will lead to the development of more robust, self-calibrating strain sensors for robots.

Supported by the National Science Foundation (Grant Number 1704436).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zill, S.N., Schmitz, J., Büschges, A.: Load sensing and control of posture and locomotion. Arthropod Struct. Dev. 33, 273–286 (2004)

    Article  Google Scholar 

  2. Ridgel, A.L., Frazier, S.F., DiCaprio, R.A., Zill, S.N.: Encoding of forces by cockroach tibial campaniform sensilla: implications in dynamic control of posture and locomotion. J. Comp. Physiol. A Sens. Neural, Behav. Physiol. 186, 359 (2000)

    Article  Google Scholar 

  3. Zill, S.N., Büschges, A., Schmitz, J.: Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus. J. Comp. Physiol. A Neuroethol. Sens. Neural, Behav. Physiol. 197, 851–867 (2011)

    Article  Google Scholar 

  4. Zill, S.N., Dallmann, C.J., Büschges, A., Chaudhry, S., Schmitz, J.: Force dynamics and synergist muscle activation in stick insects: the effects of using joint torques as mechanical stimuli. J. Neurophysiol. 120, 1807–1823 (2018)

    Article  Google Scholar 

  5. Zill, S.N., Moran, D.T.: The exoskeleton and insect proprioception. i. responses of tibial campaniform sensilla to external and muscle-generated forces in the American Cockroach, Periplaneta Americana. J. Exp. Biol. 91, 1–24 (1981)

    Google Scholar 

  6. Zill, S.N., Schmitz, J., Chaudhry, S., Büschges, A.: Force encoding in stick insect legs delineates a reference frame for motor control. J. Neurophysiol. 108, 1453–1472 (2012)

    Article  Google Scholar 

  7. Ekeberg, Ö., Blümel, M., Büschges, A.: Dynamic simulation of insect walking. Arthropod Struct. Dev. 33, 287–300 (2004)

    Article  Google Scholar 

  8. Noah, J.A., Quimby, L., Frazier, S.F., Zill, S.N.: Walking on a “peg leg”: Extensor muscle activities and sensory feedback after distal leg denervation in cockroaches. J. Comp. Physiol. A Neuroethol. Sens. Neural, Behav. Physiol. 190, 217–231 (2004)

    Article  Google Scholar 

  9. Akay, T., Bässler, U., Gerharz, P., Büschges, A.: The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the Femur-Tibia joint. J. Neurophysiol. 85, 594–604 (2001)

    Article  Google Scholar 

  10. Szczecinski, N.S., et al.: Introducing MantisBot: hexapod robot controlled by a high-fidelity, real-time neural simulation. In: IEEE International Conference on Intelligent Robots and Systems, Hamburg, DE, pp. 3875–3881 (2015)

    Google Scholar 

  11. Goldsmith, C., Szczecinski, N.S., Quinn, R.D.: Neurodynamic modeling of the Fruit Fly Drosophila melanogaster. Bioinspir., Biomim (2020)

    Book  Google Scholar 

  12. Szczecinski, N.S., Getsy, A.P., Martin, J.P., Ritzmann, R.E., Quinn, R.D.: MantisBot is a robotic model of visually guided motion in the praying mantis. Arthropod. Struct. Dev. 46(5), 736–751 (2017)

    Article  Google Scholar 

  13. Schäffersmann, M., Schneider, A., Schmitz, J.: Self-adjustable transducer for bio-inspired strain detection in walking legs. In: Mobile Service Robotics. pp. 199–206. World Scientific (2014)

    Google Scholar 

  14. Chapman, K.M., Smith, R.S.: A linear transfer function underlying impulse frequency modulation in a cockroach mechanoreceptor. Nature 197, 699–700 (1963)

    Article  Google Scholar 

  15. French, A.S., Holden, A.V., Stein, R.B.: The estimation of the frequency response function of a mechanoreceptor. Kybernetik. 11, 15–23 (1972)

    Article  Google Scholar 

  16. Dallmann, C.J., Dürr, V., Schmitz, J.: Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control. Proc. Biol. Sci. 283, 20151708 (2016)

    Google Scholar 

  17. Szczecinski, N.S., Hunt, A.J., Quinn, R.D.: A functional subnetwork approach to designing synthetic nervous systems that control legged robot locomotion. Front. Neurorobot. 11, 37 (2017)

    Article  Google Scholar 

  18. Khalil, H.K.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  19. French, A.S., Torkkeli, P.H.: The power law of sensory adaptation: Simulation by a model of excitability in spider mechanoreceptor neurons. Ann. Biomed. Eng. 36, 153–161 (2008)

    Article  Google Scholar 

  20. Chapman, K.M., Mosinger, J.L., Duckrow, R.B.: The role of distributed viscoelastic coupling in sensory adaptation in an insect mechanoreceptor. J. Comp. Physiol. A 131, 1–12 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas S. Szczecinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Szczecinski, N.S., Zill, S.N., Dallmann, C.J., Quinn, R.D. (2020). Modeling the Dynamic Sensory Discharges of Insect Campaniform Sensilla. In: Vouloutsi, V., Mura, A., Tauber, F., Speck, T., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2020. Lecture Notes in Computer Science(), vol 12413. Springer, Cham. https://doi.org/10.1007/978-3-030-64313-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64313-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64312-6

  • Online ISBN: 978-3-030-64313-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics