Abstract
Biohybrid approaches harnessing living systems and biological tissue to accumulate electrical energy have potential to contribute green and autonomous power sources. We recently discovered that the cuticle-cellular tissue bilayer in higher plant leaves functions as an integrated triboelectric generator that is capable of converting mechanical stimuli into electricity. In this manner, living plants can be used to transduce mechanical energy such as wind energy into electricity. Here, we report on two essential components of the plant-biohybrid energy harvesting prototypes studied in Ficus microcarpa and Rhododendron yakushimanum, which are 1) the electrodes at the plant tissue that are used to harvest the electrical signals and 2) the wind-induced mechanical interactions between plants and an artificial leaf based on a silicone rubber/indium tin oxide/polyethylene terephthalate multilayer that is installed at the plant’s leaf to enhance the power output. We show moreover that in the same manner a Nerium oleander plant can directly power 50 LEDs and a digital thermometer under wind excitation. The results reveal design strategies for biohybrid energy harvesters on the basis of living plants that could become autonomous energy sources for sensor networks and environmental monitoring.
Keywords
- Biohybrid energy sources
- In vivo energy sources
- Plants
- Triboelectric generators
- Green energy
This is a preview of subscription content, access via your institution.
Buying options





References
Giraldo, J.P., Wu, H., Newkirk, G.M., Kruss, S.: Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14, 541–553 (2019). https://doi.org/10.1038/s41565-019-0470-6
Wong, M.H., et al.: Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nat. Mater. 16, 264–272 (2017). https://doi.org/10.1038/nmat4771
Kwak, S.-Y., et al.: A nanobionic light-emitting plant. Nano Lett. 17, 7951–7961 (2017). https://doi.org/10.1021/acs.nanolett.7b04369
Di Giacomo, R., Daraio, C., Maresca, B.: Plant nanobionic materials with a giant temperature response mediated by pectin-Ca2+. Proc. Natl. Acad. Sci. 112, 4541–4545 (2015). https://doi.org/10.1073/pnas.1421020112
Kim, J.J., Allison, L.K., Andrew, T.L.: Vapor-printed polymer electrodes for long-term, on-demand health monitoring. Sci. Adv. 5, eaaw0463 (2019). https://doi.org/10.1126/sciadv.aaw0463
Stavrinidou, E., et al.: Electronic plants. Sci. Adv. 1, e1501136 (2015). https://doi.org/10.1126/sciadv.1501136
Stavrinidou, E., et al.: In vivo polymerization and manufacturing of wires and supercapacitors in plants. Proc. Natl. Acad. Sci. 114, 2807–2812 (2017). https://doi.org/10.1073/pnas.1616456114
Thomas, T., Lew, S., Koman, V.B., Gordiichuk, P., Park, M., Strano, M.S.: The emergence of plant nanobionics and living plants as technology. Adv. Mater. Technol. 1900657, 1–12 (2019). https://doi.org/10.1002/admt.201900657
Nitisoravut, R., Regmi, R.: Plant microbial fuel cells: a promising biosystems engineering. Renew. Sustain. Energy Rev. 76, 81–89 (2017). https://doi.org/10.1016/j.rser.2017.03.064
Strik, D.P., Timmers, R.A., Helder, M., Steinbusch, K.J., Hamelers, H.V., Buisman, C.J.: Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol. 29, 41–49 (2011). https://doi.org/10.1016/j.tibtech.2010.10.001
Strik, D.P.B.T.B., Bert, H.V.M.H., Snel, J.F.H., Buisman, C.J.N.: Green electricity production with living plants and bacteria in a fuel cell. Int. J. Energy Res. 32, 870–876 (2008). https://doi.org/10.1002/er.1397
Deng, H., Chen, Z., Zhao, F.: Energy from plants and microorganisms: progress in plant - microbial fuel cells. Chemsuschem 5, 1006–1011 (2012). https://doi.org/10.1002/cssc.201100257
McCormick, A.J., Bombelli, P., Bradley, R.W., Thorne, R., Wenzele, T., Howe, C.J.: Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci. 8, 1092–1109 (2015). https://doi.org/10.1039/C4EE03875D
Mershin, A., et al.: Self-assembled photosystem-I biophotovoltaics on nanostructured TiO 2 and ZnO. Sci. Rep. 2, 234 (2012). https://doi.org/10.1038/srep00234
Tschörtner, J., Lai, B., Krömer, J.O.: Biophotovoltaics: green power generation from sunlight and water. Front. Microbiol. 10, 866 (2019). https://doi.org/10.3389/fmicb.2019.00866
Flexer, V., Mano, N.: From dynamic measurements of photosynthesis in a living plant to sunlight transformation into electricity. Anal. Chem. 82, 1444–1449 (2010). https://doi.org/10.1021/ac902537h
Miyake, T., et al.: Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms. Energy Environ. Sci. 4, 5008–5012 (2011). https://doi.org/10.1039/c1ee02200h
Meder, F., et al.: Energy conversion at the cuticle of living plants. Adv. Funct. Mater. 28, 1806689 (2018). https://doi.org/10.1002/adfm.201806689
Meder, F., Thielen, M., Mondini, A., Speck, T., Mazzolai, B.: Living plant-hybrid generators for multidirectional wind energy conversion. Energy Technol. 8, 2000236 (2020). https://doi.org/10.1002/ente.202000236
Riederer, M., Müller, C. (eds.) Biology of the Plant Cuticle. Annual Plant Reviews, vol. 23. Blackwell Publishing, Oxford (2006).
Kim, D.W., Kim, S., Jeong, U.: Lipids: source of static electricity of regenerative natural substances and nondestructive energy harvesting. Adv. Mater. 30, 1804949 (2018). https://doi.org/10.1002/adma.201804949
Wu, C., Wang, A.C., Ding, W., Guo, H., Wang, Z.L.: Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9, 1802906 (2019). https://doi.org/10.1002/aenm.201802906
Wang, Z.L.: Triboelectric nanogenerators as new energy technology for self-powered chemical sensors. ACS Energy Lett. 7, 9533–9557 (2013). https://doi.org/10.1021/nn404614z
Wang, Z.L., Chen, J., Lin, L.: Progress in triboelectric nanogenertors as new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015). https://doi.org/10.1039/x0xx00000x
Ferrari, L.M., et al.: Ultraconformable Temporary Tattoo Electrodes for Electrophysiology. Adv. Sci. 5, 1–11 (2018). https://doi.org/10.1002/advs.201700771
Mousavi, S.A.R., Nguyen, C.T., Farmer, E.E., Kellenberger, S.: Measuring surface potential changes on leaves. Nat. Protoc. 9, 1997–2004 (2014). https://doi.org/10.1038/nprot.2014.136
Acknowledgments
This work was funded by GrowBot, the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No 824074. TS acknowledges additional funding by the German Research Foundation (DFG) under Germany’s Excellence Strategy - EXC-2193/ 1–390951807.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Meder, F., Thielen, M., Naselli, G.A., Taccola, S., Speck, T., Mazzolai, B. (2020). Biohybrid Wind Energy Generators Based on Living Plants. In: Vouloutsi, V., Mura, A., Tauber, F., Speck, T., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2020. Lecture Notes in Computer Science(), vol 12413. Springer, Cham. https://doi.org/10.1007/978-3-030-64313-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-64313-3_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-64312-6
Online ISBN: 978-3-030-64313-3
eBook Packages: Computer ScienceComputer Science (R0)