Skip to main content

Biohybrid Wind Energy Generators Based on Living Plants

Part of the Lecture Notes in Computer Science book series (LNAI,volume 12413)

Abstract

Biohybrid approaches harnessing living systems and biological tissue to accumulate electrical energy have potential to contribute green and autonomous power sources. We recently discovered that the cuticle-cellular tissue bilayer in higher plant leaves functions as an integrated triboelectric generator that is capable of converting mechanical stimuli into electricity. In this manner, living plants can be used to transduce mechanical energy such as wind energy into electricity. Here, we report on two essential components of the plant-biohybrid energy harvesting prototypes studied in Ficus microcarpa and Rhododendron yakushimanum, which are 1) the electrodes at the plant tissue that are used to harvest the electrical signals and 2) the wind-induced mechanical interactions between plants and an artificial leaf based on a silicone rubber/indium tin oxide/polyethylene terephthalate multilayer that is installed at the plant’s leaf to enhance the power output. We show moreover that in the same manner a Nerium oleander plant can directly power 50 LEDs and a digital thermometer under wind excitation. The results reveal design strategies for biohybrid energy harvesters on the basis of living plants that could become autonomous energy sources for sensor networks and environmental monitoring.

Keywords

  • Biohybrid energy sources
  • In vivo energy sources
  • Plants
  • Triboelectric generators
  • Green energy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-64313-3_23
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-64313-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Giraldo, J.P., Wu, H., Newkirk, G.M., Kruss, S.: Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14, 541–553 (2019). https://doi.org/10.1038/s41565-019-0470-6

    CrossRef  Google Scholar 

  2. Wong, M.H., et al.: Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nat. Mater. 16, 264–272 (2017). https://doi.org/10.1038/nmat4771

    CrossRef  Google Scholar 

  3. Kwak, S.-Y., et al.: A nanobionic light-emitting plant. Nano Lett. 17, 7951–7961 (2017). https://doi.org/10.1021/acs.nanolett.7b04369

    CrossRef  Google Scholar 

  4. Di Giacomo, R., Daraio, C., Maresca, B.: Plant nanobionic materials with a giant temperature response mediated by pectin-Ca2+. Proc. Natl. Acad. Sci. 112, 4541–4545 (2015). https://doi.org/10.1073/pnas.1421020112

    CrossRef  Google Scholar 

  5. Kim, J.J., Allison, L.K., Andrew, T.L.: Vapor-printed polymer electrodes for long-term, on-demand health monitoring. Sci. Adv. 5, eaaw0463 (2019). https://doi.org/10.1126/sciadv.aaw0463

  6. Stavrinidou, E., et al.: Electronic plants. Sci. Adv. 1, e1501136 (2015). https://doi.org/10.1126/sciadv.1501136

    CrossRef  Google Scholar 

  7. Stavrinidou, E., et al.: In vivo polymerization and manufacturing of wires and supercapacitors in plants. Proc. Natl. Acad. Sci. 114, 2807–2812 (2017). https://doi.org/10.1073/pnas.1616456114

    CrossRef  Google Scholar 

  8. Thomas, T., Lew, S., Koman, V.B., Gordiichuk, P., Park, M., Strano, M.S.: The emergence of plant nanobionics and living plants as technology. Adv. Mater. Technol. 1900657, 1–12 (2019). https://doi.org/10.1002/admt.201900657

    CrossRef  Google Scholar 

  9. Nitisoravut, R., Regmi, R.: Plant microbial fuel cells: a promising biosystems engineering. Renew. Sustain. Energy Rev. 76, 81–89 (2017). https://doi.org/10.1016/j.rser.2017.03.064

    CrossRef  Google Scholar 

  10. Strik, D.P., Timmers, R.A., Helder, M., Steinbusch, K.J., Hamelers, H.V., Buisman, C.J.: Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol. 29, 41–49 (2011). https://doi.org/10.1016/j.tibtech.2010.10.001

    CrossRef  Google Scholar 

  11. Strik, D.P.B.T.B., Bert, H.V.M.H., Snel, J.F.H., Buisman, C.J.N.: Green electricity production with living plants and bacteria in a fuel cell. Int. J. Energy Res. 32, 870–876 (2008). https://doi.org/10.1002/er.1397

  12. Deng, H., Chen, Z., Zhao, F.: Energy from plants and microorganisms: progress in plant - microbial fuel cells. Chemsuschem 5, 1006–1011 (2012). https://doi.org/10.1002/cssc.201100257

    CrossRef  Google Scholar 

  13. McCormick, A.J., Bombelli, P., Bradley, R.W., Thorne, R., Wenzele, T., Howe, C.J.: Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci. 8, 1092–1109 (2015). https://doi.org/10.1039/C4EE03875D

    CrossRef  Google Scholar 

  14. Mershin, A., et al.: Self-assembled photosystem-I biophotovoltaics on nanostructured TiO 2 and ZnO. Sci. Rep. 2, 234 (2012). https://doi.org/10.1038/srep00234

    CrossRef  Google Scholar 

  15. Tschörtner, J., Lai, B., Krömer, J.O.: Biophotovoltaics: green power generation from sunlight and water. Front. Microbiol. 10, 866 (2019). https://doi.org/10.3389/fmicb.2019.00866

    CrossRef  Google Scholar 

  16. Flexer, V., Mano, N.: From dynamic measurements of photosynthesis in a living plant to sunlight transformation into electricity. Anal. Chem. 82, 1444–1449 (2010). https://doi.org/10.1021/ac902537h

    CrossRef  Google Scholar 

  17. Miyake, T., et al.: Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms. Energy Environ. Sci. 4, 5008–5012 (2011). https://doi.org/10.1039/c1ee02200h

    CrossRef  Google Scholar 

  18. Meder, F., et al.: Energy conversion at the cuticle of living plants. Adv. Funct. Mater. 28, 1806689 (2018). https://doi.org/10.1002/adfm.201806689

    CrossRef  Google Scholar 

  19. Meder, F., Thielen, M., Mondini, A., Speck, T., Mazzolai, B.: Living plant-hybrid generators for multidirectional wind energy conversion. Energy Technol. 8, 2000236 (2020). https://doi.org/10.1002/ente.202000236

    CrossRef  Google Scholar 

  20. Riederer, M., Müller, C. (eds.) Biology of the Plant Cuticle. Annual Plant Reviews, vol. 23. Blackwell Publishing, Oxford (2006).

    Google Scholar 

  21. Kim, D.W., Kim, S., Jeong, U.: Lipids: source of static electricity of regenerative natural substances and nondestructive energy harvesting. Adv. Mater. 30, 1804949 (2018). https://doi.org/10.1002/adma.201804949

    CrossRef  Google Scholar 

  22. Wu, C., Wang, A.C., Ding, W., Guo, H., Wang, Z.L.: Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9, 1802906 (2019). https://doi.org/10.1002/aenm.201802906

    CrossRef  Google Scholar 

  23. Wang, Z.L.: Triboelectric nanogenerators as new energy technology for self-powered chemical sensors. ACS Energy Lett. 7, 9533–9557 (2013). https://doi.org/10.1021/nn404614z

    CrossRef  Google Scholar 

  24. Wang, Z.L., Chen, J., Lin, L.: Progress in triboelectric nanogenertors as new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015). https://doi.org/10.1039/x0xx00000x

    CrossRef  Google Scholar 

  25. Ferrari, L.M., et al.: Ultraconformable Temporary Tattoo Electrodes for Electrophysiology. Adv. Sci. 5, 1–11 (2018). https://doi.org/10.1002/advs.201700771

    CrossRef  Google Scholar 

  26. Mousavi, S.A.R., Nguyen, C.T., Farmer, E.E., Kellenberger, S.: Measuring surface potential changes on leaves. Nat. Protoc. 9, 1997–2004 (2014). https://doi.org/10.1038/nprot.2014.136

    CrossRef  Google Scholar 

Download references

Acknowledgments

This work was funded by GrowBot, the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No 824074. TS acknowledges additional funding by the German Research Foundation (DFG) under Germany’s Excellence Strategy - EXC-2193/ 1–390951807.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabian Meder or Barbara Mazzolai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Meder, F., Thielen, M., Naselli, G.A., Taccola, S., Speck, T., Mazzolai, B. (2020). Biohybrid Wind Energy Generators Based on Living Plants. In: Vouloutsi, V., Mura, A., Tauber, F., Speck, T., Prescott, T.J., Verschure, P.F.M.J. (eds) Biomimetic and Biohybrid Systems. Living Machines 2020. Lecture Notes in Computer Science(), vol 12413. Springer, Cham. https://doi.org/10.1007/978-3-030-64313-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64313-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64312-6

  • Online ISBN: 978-3-030-64313-3

  • eBook Packages: Computer ScienceComputer Science (R0)