Skip to main content

DTC Versus Vector Control Strategies for a Grid Connected DFIG-Based Wind Turbine

  • Conference paper
  • First Online:
Distributed Sensing and Intelligent Systems

Part of the book series: Studies in Distributed Intelligence ((SDI))

  • 382 Accesses

Abstract

With the high level of wind power penetration, system executives have an increasing interest in investigating the wind power integration influence on power systems. The doubly fed induction generator (DFIG) is commonly employed in wind power generation systems. In this chapter, we focus on the direct torque and the classic vector control applied to the rotor side converter (RSC) of a grid-connected doubly fed induction generator (DFIG) using a detailed dynamic model under dq reference frame. The two strategies are compared considering many parameters as the rotor currents, the stator power, electromagnetic torque, and rotor flux to ensure the proper operation and to enhance the performance of the DFIG. Both control strategies of our machine are simulated using MATLAB/SIMULINK software package. Finally, the simulations results are displayed and well discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 309.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Enerdata. (2018). The global energy statistical yearbook. https://yearbook.enerdata.net.

  2. Dehong, X., Frede, B., Wenjie, C., & Nan, Z. (2018). Advanced control of doubly fed induction generator for wind power systems. Wiley.

    Google Scholar 

  3. Fox, B., Leslie, B., Damian, F., Nick, J., David, M., Mark, O., Richard, W., & Olimpo, A. (2014). Wind power integration: Connection and system operational aspects (2nd ed.). Institution of Engineering and Technology.

    Book  Google Scholar 

  4. Kerrouche, K., Mezouar, A., & Belgacem, K. (2013). Decoupled control of doubly fed induction generator by vector control for wind energy conversion system. In Energy procedia (pp. 239–248).

    Google Scholar 

  5. Fei, G., Tao, Z., & Zengping, W. (2012). Comparative study of direct power control with vector control for rotor side converter of DFIG. In 9th IET International Conference on advances in power system control, operation and management (pp. 1–6).

    Google Scholar 

  6. Arnalte, S., Burgos, J. C., & Rodríguez-Amenedo, J. L. (2013). Direct torque control of a doubly-fed induction generator for variable speed wind turbines. Electric Power Components & Systems, 30(2), 199–216.

    Article  Google Scholar 

  7. Li, Y., Hang, L., Li, G., Guo, Y., Zou, Y., Chen, J., Li, J., Jian, Z., & Li, S. (2016). An improved DTC controller for DFIG-based wind generation system. In IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia) (pp. 1423–1426).

    Google Scholar 

  8. Kumar, A., & GiriBabu, D. (2016). Performance improvement of DFIG fed Wind Energy Conversion system using ANFIS controller. In 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB) (pp. 202–206).

    Google Scholar 

  9. Gonzalo, A., Jesus, L., Miguel, R., Luis, M., & Grzegorz, I. (2011). Doubly fed induction machine modeling and control for wind energy generation. Wiley.

    Google Scholar 

  10. Haitham, A., Mariusz, M., & Kamal, A. (2014). Power electronics for renewable energy systems, transportation and industrial applications (1st ed.). Wiley.

    Google Scholar 

  11. Zhaoyang, S., Ping, W., & Pengxian, S. (2014). Research on control strategy of DFIG rotor side converter. In IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific) (pp. 1–5).

    Google Scholar 

  12. Bin, W., Yongqiang, L., Navid, Z., & Samir, K. (2011). Power conversion and control of wind energy systems. Wiley.

    Google Scholar 

  13. Zhang, Y., Li, Z., Wang, T., Xu, W., & Zhu, J. (2011). Evaluation of a class of improved DTC method applied in DFIG for wind energy applications. In International Conference on electrical machines and systems (pp. 1–6).

    Google Scholar 

  14. Jihène, B., Adel, K., & Mohamed, F. M. (2011). DTC, DPC and Nonlinear Vector Control Strategies Applied to the DFIG Operated at Variable Speed. Journal of Electrical Engineering, 11(3), 1–13.

    Google Scholar 

  15. Xiong, P., & Sun, D. (2016). Backstepping-based DPC strategy of a wind turbine driven DFIG under Normal and harmonic grid voltage. IEEE Transactions on Power Electronics, 31(6), 4216–4225.

    Article  Google Scholar 

  16. Adel, K., Mohamed, F., & M. (2010). Sensorless-adaptive DTC of double star induction motor. Energy Conversion and Management, 51(12), 2878–2892.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 DFIG-WT Parameters

V s (line-line) =690 V, f = 50 Hz, P nom = 2 MW, V r (line-line) = 2070 V, P = 2, u = 1/3, I s = 1070 A, (max slip) s max = 1/3, (rated) T em=12,732 N.m, Fs = 1.9733 Wb, R s = 0.0026 Ω, R r = 0.0029 Ω, L s = Lr = 0.0026 H, L m = 0.0025 H, β = 0, J = 127 kg m2, f = 0.001, σ = 0.0661, V dc = 1150 V, R = 42, ρ = 1.1225, G = 100. K opt = 270,000, ns = synchronous speed = 1500 rev/min, s = 0.000002 s, V w = 12 m/s, (initial slip) = 0.2.

1.2 Parameters of the DTC

  • Ts_DTC = 0.00002 s

  • HT = HF = 1%.

1.3 Parameters of the PI Controllers

  • Kp_id = Kp_iq = 0.5771, Ki_id = Ki_iq = 491.6

  • Kp_n = 10,160, Ki_n = 406,400.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kouider, K., Bekri, A. (2022). DTC Versus Vector Control Strategies for a Grid Connected DFIG-Based Wind Turbine. In: Elhoseny, M., Yuan, X., Krit, Sd. (eds) Distributed Sensing and Intelligent Systems. Studies in Distributed Intelligence . Springer, Cham. https://doi.org/10.1007/978-3-030-64258-7_62

Download citation

Publish with us

Policies and ethics