Skip to main content

MateBot: The Design of a Human-Like, Context-Sensitive Virtual Bot for Harmonious Human-Computer Interaction

  • 778 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12398)

Abstract

The virtual bot is one of the hot topics in artificial intelligence, where most of the current studies focus on chatbots. Nevertheless, the context-sensitive virtual bot, especially with rich human-like interactions (e.g., appearance change, context-aware narration/recommendation) regarding the ambient changes (e.g., location, focused scene) through various built-in sensors, would have broader application. Towards this direction, we propose MateBot, a human-like, context-sensitive virtual bot, which supports harmonious human-computer interaction on smartphones. The design of MateBot consists of three parts. First, a context sensing network is used to recognize the input background information and face information, and modify the appearance of the virtual bot through the conversion of the encoding network. Second, a human-like bot appearance generation network can generate a virtual bot image with a human-like appearance through the GAN network and modify the appearance of the virtual bot with context-sensitive information. Third, a personalized conversation network is devised to communicate with human users. Furthermore, we apply MateBot to the intelligent travel scenario to justify its practicality, and the experiment results show that the bot can better increase the user’s sense of substitution and improve the communication efficiency between human users and virtual bots.

Keywords

  • Virtual bot
  • Context-sensitive
  • MateBot

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-64243-3_21
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-64243-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)

    Google Scholar 

  2. Colby, K.M.: Artificial paranoia: a computer simulation of paranoid processes, vol. 49. Elsevier (2013)

    Google Scholar 

  3. Hu, Y.T., Huang, J.B., Schwing, A.: MaskRNN: instance level video object segmentation. In: Advances in Neural Information Processing Systems, pp. 325–334 (2017)

    Google Scholar 

  4. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  5. Huang, X., Li, Y., Poursaeed, O., Hopcroft, J., Belongie, S.: Stacked generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5077–5086 (2017)

    Google Scholar 

  6. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  7. Kim, T., Kim, B., Cha, M., Kim, J.: Unsupervised visual attribute transfer with reconfigurable generative adversarial networks. arXiv preprint arXiv:1707.09798 (2017)

  8. Krizhevsky, A., Sutskever, I., Hinton, G.: Advances in Neural Information Processing Systems (NIPS) (2012)

    Google Scholar 

  9. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  10. Li, J., Galley, M., Brockett, C., Spithourakis, G.P., Gao, J., Dolan, B.: A persona-based neural conversation model. arXiv preprint arXiv:1603.06155 (2016)

  11. Li, M., Zuo, W., Zhang, D.: Deep identity-aware transfer of facial attributes. arXiv preprint arXiv:1610.05586 (2016)

  12. Li, Y., Su, H., Shen, X., Li, W., Cao, Z., Niu, S.: Dailydialog: a manually labelled multi-turn dialogue dataset. arXiv preprint arXiv:1710.03957 (2017)

  13. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)

    Google Scholar 

  14. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 94–101. IEEE (2010)

    Google Scholar 

  15. Qian, Q., Huang, M., Zhao, H., Xu, J., Zhu, X.: Assigning personality/identity to a chatting machine for coherent conversation generation. arXiv preprint arXiv:1706.02861 (2017)

  16. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  17. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

    Google Scholar 

  18. Shang, L., Lu, Z., Li, H.: Neural responding machine for short-text conversation. arXiv preprint arXiv:1503.02364 (2015)

  19. Shen, W., Liu, R.: Learning residual images for face attribute manipulation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4030–4038 (2017)

    Google Scholar 

  20. Sordoni, A., et al.: A neural network approach to context-sensitive generation of conversational responses. arXiv preprint arXiv:1506.06714 (2015)

  21. Wallace, R.S.: The anatomy of ALICE. In: Epstein, R., Roberts, G., Beber, G. (eds.) Parsing the Turing Test, pp. 181–210. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-6710-5_13

    CrossRef  Google Scholar 

  22. Weizenbaum, J., et al.: Eliza–a computer program for the study of natural language communication between man and machine. Commun. ACM 9(1), 36–45 (1966)

    CrossRef  Google Scholar 

  23. Yavuz, S., Rastogi, A., Chao, G.L., Hakkani-Tur, D.: Deepcopy: grounded response generation with hierarchical pointer networks. arXiv preprint arXiv:1908.10731 (2019)

  24. Zhang, S., Dinan, E., Urbanek, J., Szlam, A., Kiela, D., Weston, J.: Personalizing dialogue agents: i have a dog, do you have pets too? arXiv preprint arXiv:1801.07243 (2018)

  25. Zhang, Y., et al.: Dialogpt: large-scale generative pre-training for conversational response generation. arXiv preprint arXiv:1911.00536 (2019)

  26. Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network. arXiv preprint arXiv:1609.03126 (2016)

  27. Zhou, L., Gao, J., Li, D., Shum, H.Y.: The design and implementation of xiaoice, an empathetic social chatbot. arXiv preprint arXiv:1812.08989 (2018)

Download references

Acknowledgment

This work was supported in part by the National Key R&D Program of China (2019QY0600), in part by the National Natural Science Foundation of China (No. 61772428, 61725205, 61902320, 61972319), in part by the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2020JQ-215), and in part by the Fundamental Research Funds for the Central Universities (No. 3102019QD1001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Guo, B., Wang, H., Cui, H., He, Y., Yu, Z. (2020). MateBot: The Design of a Human-Like, Context-Sensitive Virtual Bot for Harmonious Human-Computer Interaction. In: Yu, Z., Becker, C., Xing, G. (eds) Green, Pervasive, and Cloud Computing. GPC 2020. Lecture Notes in Computer Science(), vol 12398. Springer, Cham. https://doi.org/10.1007/978-3-030-64243-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64243-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64242-6

  • Online ISBN: 978-3-030-64243-3

  • eBook Packages: Computer ScienceComputer Science (R0)