Skip to main content

Pattern Recognition Based on an Improved Szmidt and Kacprzyk’s Correlation Coefficient in Pythagorean Fuzzy Environment

  • Conference paper
  • First Online:
Advances in Neural Networks – ISNN 2020 (ISNN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12557))

Included in the following conference series:

Abstract

Correlation measure is an applicable tool in Pythagorean fuzzy domain for resolving problems of multi-criteria decision-making (MCDM). Szmidt and Kacprzyk proposed a correlation coefficient in intuitionistic fuzzy domain (IFSs) by considering the orthodox parameters of IFSs. Nonetheless, the approach contradicts the axiomatic description of correlation coefficient between IFSs in literature. In this paper we modify the Szmidt and Kacprzyk’s approach for measuring correlation coefficient between IFSs to satisfy the axiomatic description of correlation coefficient, and extend the modified version to Pythagorean fuzzy environment. Some numerical illustrations are considered to ascertain the merit of the modified version over Szmidt and Kacprzyk’s approach. Finally, the proposed correlation coefficient measure is applied to resolve some pattern recognition problems. In recap, the goal of this paper is to modify Szmidt and Kacprzyk’s correlation coefficient for IFSs, extend it to Pythagorean fuzzy context with pattern recognition applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Set Syst. 20, 87–96 (1986)

    Article  MATH  Google Scholar 

  2. Atanassov, K.T.: Geometrical interpretation of the elements of the intuitionistic fuzzy objects. Preprint IM-MFAIS-1-89, Sofia (1989)

    Google Scholar 

  3. Atanassov, K.T.: Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg (1999)

    Book  MATH  Google Scholar 

  4. Bai, S.M., Chen, S.M.: Automatically constructing concept maps based on fuzzy rules for adapting learning systems. Expert Syst. Appl. 35(1–2), 41–49 (2008)

    Article  Google Scholar 

  5. Boran, F.E., Akay, D.: A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition. Inform. Sci. 255(10), 45–57 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, S.M., Chang, C.H.: Fuzzy multiattribute decision making based on transformation techniques of intuitionistic fuzzy values and intuitionistic fuzzy geometric averaging operators. Inform. Sci. 352, 133–149 (2016)

    Article  MATH  Google Scholar 

  7. Chiang, D.A., Lin, N.P.: Correlation of fuzzy sets. Fuzzy Set Syst. 102(2), 221–226 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. De, S.K., Biswas, R., Roy, A.R.: An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Set Syst. 117(2), 209–213 (2001)

    Article  MATH  Google Scholar 

  9. Dumitrescu, D.: A definition of an informational energy in fuzzy set theory. Studia Univ. Babes-Bolyai Math. 22, 57–59 (1977)

    MathSciNet  MATH  Google Scholar 

  10. Dumitrescu, D.: Fuzzy correlation. Studia Univ. Babes-Bolyai Math. 23, 41–44 (1978)

    MathSciNet  MATH  Google Scholar 

  11. Du, Y.Q., Hou, F., Zafar, W., Yu, Q., Zhai, Y.: A novel method for multiattribute decision making with interval-valued Pythagorean fuzzy linguistic information. Int. J. Intell. Syst. 32(10), 1085–1112 (2017)

    Article  Google Scholar 

  12. Ejegwa, P.A.: Distance and similarity measures for Pythagorean fuzzy sets. Granul. Comput. 5(2), 225–238 (2018). https://doi.org/10.1007/s41066-018-00149-z

    Article  Google Scholar 

  13. Ejegwa, P.A.: Improved composite relation for Pythagorean fuzzy sets and its application to medical diagnosis. Granul. Comput. 5(2), 277–286 (2019)

    Article  Google Scholar 

  14. Ejegwa, P.A.: Pythagorean fuzzy set and its application in career placements based on academic performance using max-min-max composition. Complex Intell. Syst. 5, 165–175 (2019). https://doi.org/10.1007/s40747-019-0091-6

    Article  Google Scholar 

  15. Ejegwa, P.A.: Modified Zhang and Xu’s distance measure of Pythagorean fuzzy sets and its application to pattern recognition problems. Neural Comput. Appl. (2019). https://doi.org/10.1007/s00521-019-04554-6

  16. Ejegwa, P.A.: Personnel appointments: a Pythagorean fuzzy sets approach using similarity measure. J. Inform. Comput. Sci. 14(2), 94–102 (2019)

    Google Scholar 

  17. Ejegwa, P.A.: Modal operators on Pythagorean fuzzy sets and some of their properties. J. Fuzzy Math. 27(4), 939–956 (2019)

    Google Scholar 

  18. Ejegwa, P.A.: New similarity measures for Pythagorean fuzzy sets with applications. Int. J. Fuzzy Comput. Model. 3(1), 75–94 (2020)

    Article  MathSciNet  Google Scholar 

  19. Ejegwa, P.A.: Generalized triparametric correlation coefficient for Pythagorean fuzzy sets with application to MCDM problems. Granul. Comput. (2020). https://doi.org/10.1007/s41066-020-00215-5

  20. Ejegwa, P.A., Adamu, I.M.: Distances between intuitionistic fuzzy sets of second type with application to diagnostic medicine. Note IFS 25(3), 53–70 (2019)

    Google Scholar 

  21. Ejegwa, P.A., Awolola, J.A.: Novel distance measures for Pythagorean fuzzy sets with applications to pattern recognition problems. Granul. Comput. (2019). https://doi.org/10.1007/s41066-019-00176-4

  22. Ejegwa, P.A., Onasanya, B.O.: Improved intuitionistic fuzzy composite relation and its application to medical diagnostic process. Note IFS 25(1), 43–58 (2019)

    Google Scholar 

  23. Ejegwa, P.A., Tyoakaa, G.U., Ayenge, A.M.: Application of intuitionistic fuzzy sets in electoral system. Int. J. Fuzzy Math. Arch. 10(1), 35–41 (2016)

    Google Scholar 

  24. Feng, Y., Li, C.: Comparison system of impulsive control system with impulse time windows. J. Intell. Fuzzy Syst. 32(6), 4197–4204 (2017)

    Article  MATH  Google Scholar 

  25. Garg, H.: A novel correlation coefficients between Pythagorean fuzzy sets and its applications to decision making processes. Int. J. Intell. Syst. 31(12), 1234–1252 (2016)

    Article  Google Scholar 

  26. Garg, H.: A new improved score function of an interval-valued Pythagorean fuzzy set based TOPSIS method. Int. J. Uncertain. Quantif. 7(5), 463–474 (2017)

    Article  Google Scholar 

  27. Garg, H.: A linear programming method based on an improved score function for interval-valued Pythagorean fuzzy numbers and its application to decision-making. Int. J. Uncertain. Fuzz. Knowl. Based Syst 29(1), 67–80 (2018)

    Article  MathSciNet  Google Scholar 

  28. Garg, H.: Hesitant Pythagorean fuzzy Maclaurin symmetricmean operators and its applications to multiattribute decision making process. Int. J. Intell. Syst. 34(4), 601–626 (2019)

    Article  Google Scholar 

  29. Gerstenkorn, T., Manko, J.: Correlation of intuitionistic fuzzy sets. Fuzzy Set Syst. 44(1), 39–43 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hatzimichailidis, A.G., Papakostas, A.G., Kaburlasos, V.G.: A novel distance measure of intuitionistic fuzzy sets and its application to pattern recognition problems. Int. J. Intell. Syst. 27, 396–409 (2012)

    Article  Google Scholar 

  31. Hung, W.L.: Using statistical viewpoint in developing correlation of intuitionistic fuzzy sets. Int. J. Uncertainty Fuzziness Knowl. Based Syst. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 9(4), 509–516 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hung, W.L., Wu, J.W.: Correlation of intuitionistic fuzzy sets by centroid method. Inform. Sci. 144(1), 219–225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, P., Chen, S.M.: Group decision making based on Heronian aggregation operators of intuitionistic fuzzy numbers. IEEE Trans. Cybern. 47(9), 2514–2530 (2017)

    Article  Google Scholar 

  34. Liu, B., Shen, Y., Mu, L., Chen, X., Chen, L.: A new correlation measure of the intuitionistic fuzzy sets. J. Intell. Fuzzy Syst. 30(2), 1019–1028 (2016)

    Article  MATH  Google Scholar 

  35. Mitchell, H.B.: A correlation coefficient for intuitionistic fuzzy sets. Int. J. Intell. Syst. 19(5), 483–490 (2014)

    Article  MATH  Google Scholar 

  36. Murthy, C.A., Pal, S.K., Majumder, D.D.: Correlation between two fuzzy membership functions. Fuzzy Set Syst. 17, 23–38 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Singh, S., Ganie, A.H.: On some correlation coefficients in Pythagorean fuzzy environment with applications. Int. J. Intell. Syst. (2020). https://doi.org/10.1002/int.22222

  38. Szmidt, E., Kacprzyk, J.: Intuitionistic fuzzy sets in some medical applications. Note IFS 7(4), 58–64 (2001)

    MATH  Google Scholar 

  39. Szmidt, E., Kacprzyk, J.: Medical diagnostic reasoning using a similarity measure for intuitionistic fuzzy sets. Note IFS 10(4), 61–69 (2004)

    MATH  Google Scholar 

  40. Szmidt, Eulalia, Kacprzyk, Janusz: Correlation of intuitionistic fuzzy sets. In: Hüllermeier, Eyke, Kruse, Rudolf, Hoffmann, Frank (eds.) IPMU 2010. LNCS (LNAI), vol. 6178, pp. 169–177. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14049-5_18

    Chapter  Google Scholar 

  41. Thao, N.X.: A new correlation coefficient of the intuitionistic fuzzy sets and its application. J. Intell. Fuzzy Syst. 35(2), 1959–1968 (2018)

    Article  MathSciNet  Google Scholar 

  42. Thao, N.X.: A new correlation coefficient of the Pythagorean fuzzy sets and its applications. Soft Comput. (2019). https://doi.org/10.1007/s00500-019-04457-7

  43. Thao, N.X., Ali, M., Smarandache, F.: An intuitionistic fuzzy clustering algorithm based on a new correlation coefficient with application in medical diagnosis. J. Intell. Fuzzy Syst. 36(1), 189–198 (2019)

    Article  Google Scholar 

  44. Wang, W., Xin, X.: Distance measure between intuitionistic fuzzy sets. Pattern Recogn. Lett. 26, 2063–2069 (2005)

    Article  Google Scholar 

  45. Yager, R.R.: Pythagorean membership grades in multicriteria decision making. Technical report MII-3301 Machine Intelligence Institute, Iona College, New Rochelle, NY (2013)

    Google Scholar 

  46. Yager, R.R.: Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 22(4), 958–965 (2014)

    Article  Google Scholar 

  47. Yager, Ronald R.: Properties and applications of Pythagorean fuzzy sets. In: Angelov, Plamen, Sotirov, Sotir (eds.) Imprecision and Uncertainty in Information Representation and Processing. SFSC, vol. 332, pp. 119–136. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26302-1_9

    Chapter  Google Scholar 

  48. Yager, R.R., Abbasov, A.M.: Pythagorean membership grades, complex numbers and decision making. Int. J. Intell. Syst. 28(5), 436–452 (2016)

    Article  Google Scholar 

  49. Xu, Zeshui: On correlation measures of intuitionistic fuzzy sets. In: Corchado, Emilio, Yin, Hujun, Botti, Vicente, Fyfe, Colin (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 16–24. Springer, Heidelberg (2006). https://doi.org/10.1007/11875581_2

    Chapter  Google Scholar 

  50. Xu, S., Chen, J., Wu, J.J.: Cluster algorithm for intuitionistic fuzzy sets. Inform. Sci. 178, 3775–3790 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yu, C.: Correlation of fuzzy numbers. Fuzzy Set Syst. 55, 303–307 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  53. Zhang, X.: A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making. Int. J. Intell. Syst. 31, 593–611 (2016)

    Article  Google Scholar 

  54. Zhang, X.L., Xu, Z.S.: Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intell. Syst. 29(12), 1061–1078 (2014)

    Article  MathSciNet  Google Scholar 

  55. Zeng, W. Li, D., Yin, Q.: Distance and similarity measures of Pythagorean fuzzy sets and their applications to multiple criteria group decision making. Int. J. Intell. Syst. (2018). https://doi.org/10.1002/int.22027

Download references

Acknowledgements

This work is supported by the Foundations of Chongqing Municipal Key Laboratory of Institutions of Higher Education ([2017]3), Chongqing Development and Reform Commission (2017[1007]), and Chongqing Three Gorges University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ejegwa, P.A., Feng, Y., Zhang, W. (2020). Pattern Recognition Based on an Improved Szmidt and Kacprzyk’s Correlation Coefficient in Pythagorean Fuzzy Environment. In: Han, M., Qin, S., Zhang, N. (eds) Advances in Neural Networks – ISNN 2020. ISNN 2020. Lecture Notes in Computer Science(), vol 12557. Springer, Cham. https://doi.org/10.1007/978-3-030-64221-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64221-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64220-4

  • Online ISBN: 978-3-030-64221-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics