Skip to main content

Membrane Applications

Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST,volume 29)

Abstract

Nanotechnology in membrane process has emerged as a boon in various realms and sectors including industry, food, healthcare, electronics, water purification, military, clothing, space and construction etc.

There is a significant need for novel advanced water technologies, in particular to ensure a high quality of drinking water, eliminate micropollutants, and intensify industrial production processes by the use of flexibly adjustable water treatment systems. Nanoengineered materials, such as nanoadsorbents, nanometals, nanomembranes, and photocatalysts, offer the potential for novel water technologies that can be easily adapted to required applications. TiO2 and graphene-based membranes have the potentials to become the preferred candidates to next-generation membranes coupling high permeability to high selectivity. In order to enter the water and wastewater market, aquaporin-based membranes have to be competitive with conventional membranes in terms of stability and useful life. However, technical limitation of nanoengineered water technologies is that they are rarely adaptable to mass processes, and at present, in many cases are not competitive with conventional treatment technologies.

In the medical world, nanotechnology is also seen as a boon since this can help with creating what is called smart drugs. In medicine, nanotechnology is entering in areas like tissue regeneration, bone repair, immunity and even cures for such ailments like cancer, diabetes, and other life threatening diseases. Nanotubes are playing the role to cure paralysis and neurological diseases. Iron oxide nanoparticles, with their superparamagnetic properties, are used in a rapidly expanding number of applications, such as for cell labeling, separation, and tracking; for therapeutic agents in cancer therapy, and for diagnostic agents. There is promising research that indicates that the cure for cancer could lie in the hands of nanoscience.

Keywords

  • Nanofibers
  • Mixed matrix membrane
  • Water purification
  • Gas separation
  • Surface modification
  • Liquid membranes
  • Biomedical applications

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jang KS, Kim HJ, Johnson JR, Kim W, Koros WJ, Jones CW, Nair S (2011) Modified mesoporous silica gas separation membranes on polymeric hollow fibers. Chem Mater 23(1–2):3025–3028

    CrossRef  CAS  Google Scholar 

  2. Robeson LM (2008) The upper bound revisited. J Membr Sci 320(1–2):390–400

    CrossRef  CAS  Google Scholar 

  3. Vinh-Thang H, Kaliaguin S (2013) Predictive models for mixed-matrix membrane performance: a review. Chem Rev 113:4980–5028

    CrossRef  CAS  Google Scholar 

  4. Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, Chichester

    CrossRef  Google Scholar 

  5. Dechnik J, Sumby CJ, Janiak C (2017) Enhancing mixed-matrix membrane performance with metalorganic framework additives. Cryst Growth Des 17(8):4467–4488

    CrossRef  CAS  Google Scholar 

  6. Jeazet HBT, Staudt C, Janiak C (2012) Metalorganic frameworks in mixed-matrix membranes for gas separation. Dalton Trans 41(46):14003–14327

    CrossRef  CAS  Google Scholar 

  7. Li L, Xu R, Song C, Zhang B, Liu Q, Wang T (2018) A review on the progress in nanoparticle/C hybrid CMS membranes for gas separation. Membranes (Basel) 8(4):134

    CrossRef  CAS  Google Scholar 

  8. Ghazali AA, Rahman SA, Samah RA (2020) Potential of adsorbents from agricultural wastes as alternative fillers in mixed matrix membrane for gas separation: a review. Green Process Synth 9:219–229

    CrossRef  Google Scholar 

  9. Rogelj J, den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, Schaeffer R, Sha F, Riahi K, Meinshausen M (2016) Paris agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534:631–639

    CrossRef  CAS  Google Scholar 

  10. Selyanchyn R, Fujikawa S (2017) Membrane thinning for efficient CO2 capture. Sci Technol Adv Mater 18(1):816–827

    CrossRef  CAS  Google Scholar 

  11. EUR 24524—Successful European Nanotechnology Research, Outstanding science and technology to match the needs of future society, Luxembourg: Publications Office of the European Union, 2011. isbn: 978-92-79-15623-6

    Google Scholar 

  12. Boroglu MS, Yumru AB (2017) Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation. Sep Purif Technol 173:269–279

    CrossRef  CAS  Google Scholar 

  13. Guerrero G, Hägg MB, Simon C, Peters T, Rival N, Denonville C (2018) CO2 separation in nanocomposite membranes by the addition of amidine and lactamide functionalized POSS® nanoparticles into a PVA layer. Membranes (Basel) 8(2):28

    CrossRef  CAS  Google Scholar 

  14. Guerrero G, Venturi D, Peters T, Rival N, Denonville C, Simon C, Henriksen PP, Hägg MB (2017) Influence of functionalized nanoparticles on the CO2/N2 separation properties of PVA-based gas separation membrane. Energy Procedia 114:627–635

    Google Scholar 

  15. Zaman W, Khan M, Absar S, Harp S, Edwards K, Takas N (2015) Fabrication of polyacrylonitrile nanofiber membranes functionalized with metal organic framework for CO2 capturing, ASME 2015 International Mechanical Engineering Congress and Exposition, vol. 9: Mechanics of Solids, Structures and Fluids, Houston, Texas, USA, November 13–19, isbn: 978-0-7918-5752-6

    Google Scholar 

  16. Leuven KU (2017) More efficient separation of methane and CO2. https://phys.org/news/2017-10-efficient-methane-co2.html. Accessed 24 May 2020

  17. Kertik A, Wee LH, Pfannmöller M, Bals S, Martens JA, Vankelecom IFJ (2017) Highly selective gas separation membrane using in situ amorphised metalorganic frameworks. Energy Environ Sci 10:2342–2351

    CrossRef  CAS  Google Scholar 

  18. Venna SR, Lartey M, Li T, Spore A, Kumar S, Nulwala HB, Luebke DR, Rosi NL, Albenze E (2015) Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. J Mater Chem A 3:5014–5022

    CrossRef  CAS  Google Scholar 

  19. Perez EV Jr, Balkus KJ, Ferraris JP, Musselman IH (2009) Mixed-matrix membranes containing MOF-5 for gas separations. J Membr Sci 328(1–2):165–173

    CrossRef  CAS  Google Scholar 

  20. Bano S, Tariq SR, Ilyas A, Aslam M, Bilad MR, Nizami AS, Khan A (2020) Synergistic solution of COcapture by novellanthanide-based MOF-76yttrium nanocrystals in mixed-matrix membranes. Energy Environ 31(4):692–712

    Google Scholar 

  21. Ozen HA, Ozturk B (2019) Gas separation characteristic of mixed matrix membrane prepared by MOF-5 including different metals. Sep Purif Technol 211:514–521

    CrossRef  CAS  Google Scholar 

  22. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kimm J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129

    CrossRef  CAS  Google Scholar 

  23. Ge B, Xu Y, Zhao H, Sun H, Guo Y, Wang W (2018) High performance gas separation mixed matrix membrane fabricated by incorporation of functionalized submicrometer-sized metal-organic framework. Materials 11:1421. https://doi.org/10.3390/ma11081421

    CrossRef  CAS  Google Scholar 

  24. Hu CC, Cheng PH, Chou SC, Lai CL, Huang SH, Tsai HA, Hung WS (2020) Separation behavior of amorphous amino-modified silica nanoparticle/polyimide mixed matrix membranes for gas separation. J Membr Sci 595:117542

    CrossRef  CAS  Google Scholar 

  25. Zahri K, Goh PS, Ismail AF (2016) The incorporation of graphene oxide into polysulfone mixed matrix membrane for CO2/CH4 separation. IOP Conf Ser Earth Environ Sci 36:012007. https://doi.org/10.1088/1755-1315/36/1/012007

  26. Golzar K, Amjad-Iranagh S, Amani M, Modarress H (2014) Molecular simulation study of penetrant gas transport properties into the pure and nanosized silica particles filled polysulfone membranes. J Membr Sci 451:117–134

    CrossRef  CAS  Google Scholar 

  27. Kiadehi AD, Rahimpour A, Jahanshahi M, Ghoreyshi AA (2015) Novel carbon nano-fibers (CNF)/polysulfone (PSf) mixed matrix membranes for gas separation. J Ind Eng Chem 22:199–207

    CrossRef  CAS  Google Scholar 

  28. Ahn J, Chung WJ, Pinnau I, Guiver MD (2008) Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J Membr Sci 314(1):123–133

    CrossRef  CAS  Google Scholar 

  29. Duval JM, Folkers B, Mulder MHV (1993) Adsorbent-filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents. J Membr Sci 80(1–2):189–198

    CrossRef  CAS  Google Scholar 

  30. Lin R, Ge L, Liu S, Rudolph V, Zhu Z (2015) Mixed-matrix membranes with metal-organic framework-decorated CNT fillers for efficient CO2 separation. ACS Appl Mater Interfaces 7(27):14750–14757

    Google Scholar 

  31. Etxeberria-Benavidesa M, David O, Johnsonb T, Łozińskac MM, Orsic A, Wrightc PA, Masteld S, Hillenbrandd R, Kapteijnf F, Gasco J (2018) High performance mixed matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer. J Membr Sci 550:198–207

    CrossRef  CAS  Google Scholar 

  32. Chakrabarty T, Neelakanda P, Peinemann KV (2018) CO2 selective, zeolitic imidazolate framework-7 based polymer composite mixed-matrix membranes. J Mate Sci Res 7(3). issn: 1927-0585, e-issn: 1927-0593

    Google Scholar 

  33. Sarfraz M, Shammakh MB (2018) Harmonious interaction of incorporating CNTs and zeollitic imidazole frameworks into polysulfone to prepare high performance MMMs for CO2 separation from humidified post combustion gases. Brazilian J Chem Eng 35(1):217–228

    Google Scholar 

  34. Khan MM, Filiz V, Bengtson G, Shishatskiy S, Rahman M, Abetz V (2012) Functionalized carbon nanotubes mixed matrix membranes of polymers of intrinsic microporosity for gas separation. Nanoscale Res Lett 7(1):504. https://doi.org/10.1186/1556-276X-7-504

    CrossRef  CAS  Google Scholar 

  35. Casado-Coterillo C, Fernández-Barquín A, Irabien A (2020) Effect of humidity on CO2/N2 and CO2/CH4 separation using novel robust mixed matrix composite hollow fiber membranes: experimental and model evaluation. Membranes 10(1):6. https://doi.org/10.3390/membranes10010006

  36. Khan IU, Hafiz M, Othman D, Jilani A, Ismail AF, Hashim H, Jaafar J, Zulhairun AK, Rahman MA, Rehman GU (2020) ZIF-8 based polysulfone hollow fiber membranes for natural gas purification. Polymer Testing 84:106415

    CrossRef  CAS  Google Scholar 

  37. Burmann P, Zornoza B, Téllez C, Coronas J (2014) Mixed matrix membranes comprising MOFs and porous silicate fillers prepared via coating for gas separation. Chem Eng Sci 107:66–75

    CrossRef  CAS  Google Scholar 

  38. Zhang Q, Li S, Wang C, Chang HC, Guo R (2020) Carbon nanotube-based mixed-matrix membranes with supramolecularly engineered interface for enhanced gas separation performance. J Membr Sci 598:117794

    CrossRef  CAS  Google Scholar 

  39. Rouzitalab Z, Maklavany DM, Rashidi A, Jafarinejad S (2018) Synthesis of N-doped nanoporous carbon from walnut shell for enhancing CO2 adsorption capacity and separation. J Environ Chem Eng 6(5):6653–6663

    CrossRef  CAS  Google Scholar 

  40. Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR, Freeman BD (2013) Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54:4729–4761

    CrossRef  CAS  Google Scholar 

  41. Ma C, Zhang C, Labreche Y, Fu S, Liu L, Koros WJ (2015) Thin-skinned intrinsically defect-free asymmetric mono-esterified hollow fiber precursors for crosslinkable polyimide gas separation membranes. J Membr Sci 493:252–262

    CrossRef  CAS  Google Scholar 

  42. Chong KC, Lai SO, Lau WJ, Thiam HS, Ismail AF, Roslan RA (2018) Preparation, characterization, and performance evaluation of polysulfone hollow fiber membrane with PEBAX or PDMS coating for oxygen enhancement process. Polymers 10:126. https://doi.org/10.3390/polym10020126

    CrossRef  CAS  Google Scholar 

  43. Kusworoa TD, Ismail AF, Mustafa A, Budiyonoa (2010) Application of activated carbon mixed matrix membrane for oxygen purification. Int J Sci Eng 1(1):21–24

    Google Scholar 

  44. Fernández-Barquín A, Casado-Coterillo C, Valencia S, Irabien A (2016) Mixed matrix membranes for O2/N2 separation: the influence of temperature. Membranes (Basel) 6:28

    Google Scholar 

  45. Rybak A, Dudek G, Krasowska M, Strzelewicz A, Grzywna ZJ, Syse P (2014) Magnetic mixed matrix membranes in air separation. Chem Pap 68:1332–1340

    CrossRef  CAS  Google Scholar 

  46. Weng TH, Wey MY, Tseng HH (2010) Enhanced O2/N2 separation performance of poly(phenylene oxide)/SBA-15/carbon molecule sieve multilayer mixed matrix membrane using SBA-15 zeolite particles. Proceedings from the 2010 international conference on chemistry and chemical engineering, Kyoto, Japan, 1–3 August, 2010, pp 245–248

    Google Scholar 

  47. Ridzuan N, Musa MH (2012) Comparison between treated and untreated zeolite towards the performance of polyethersulfone mixed matrix membranes (MMMs) for O2/N2 gas separation. Adv Mater Res 550–55:728–735

    Google Scholar 

  48. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48(10):4638–4663

    CrossRef  CAS  Google Scholar 

  49. Ren H, Jin J, Hu J, Liu H (2012) Affinity between metal–organic frameworks and polyimides in asymmetric mixed matrix membranes for gas separations. Ind Eng Chem Res 51(30):10156–10164

    CrossRef  CAS  Google Scholar 

  50. Khulbe KC, Matsuura T (2018) Thin film composite and/or thin film nanocomposite hollow fiber membrane for water treatment, pervaporation, and gas/vapor separation. Polymer 10:1051. https://doi.org/10.3390/polym10101051

    CrossRef  CAS  Google Scholar 

  51. Kim K, Hong SU, Kim JH, Lee HK (2014) Preparation and performance evaluation of composite hollow fiber membrane for SO2 separation. AIChE J 60(6):2298–2306

    Google Scholar 

  52. Zhang L, Xin Q, Lou L, Li X, Zhang L, Wang S, Li Y, Zhang Y, Wu H, Jiang Z (2019) Mixed matrix membrane contactor containing core-shell hierarchical Cu@4A filler for efficient SO2 capture. J Hazard Mater 376:160–169

    Google Scholar 

  53. Nasir A, Masood F, Yasin T, Hameed A (2019) Review: progress in polymeric nanocomposite membranes for wastewater treatment: preparation, properties and applications. J Ind Eng Chem 79:29–40

    CrossRef  CAS  Google Scholar 

  54. Kunduru KR, Nazarkovsky M, Farah S, Pawar RP, Basu A, Domb AJ (2017) Chapter 2. Nanotechnology for water purification: applications of nanotechnology methods in wastewater treatment. In: Water purification. Academic, New York, pp 33–74

    CrossRef  Google Scholar 

  55. Das R, Ali ME, Hamid SBA, Ramakrishna S, Chowdhury ZZ (2014) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalin 336:97–109

    CrossRef  CAS  Google Scholar 

  56. Nanotechnology: Concept and its application; Nano mission of India…. https://himachalpradesh.pscnotes.com/main-notes/ras-mains-paper-2/general-science-and-technoloy/nanotechnology-concept-and-its-application-nano-mission-of-india/. Accessed 20 Apr 2020

  57. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK (2018) Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol Environ Saf 148:702–712

    CrossRef  CAS  Google Scholar 

  58. Kima J, Van der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Pollut 158(7):72335–72349

    Google Scholar 

  59. Arsuaga JM, Sotto A, del Rosario G, Martínez A, Molina S, Teli SB, de Abajo J (2013) Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes. J Membr Sci 428:131–141

    CrossRef  CAS  Google Scholar 

  60. Nasrollahi N, Aber S, Vatanpour V, Mahmoodi NM (2018) The effect of amine functionalization of CuO and ZnO nanoparticles used as additives on the morphology and the permeation properties of polyethersulfone ultrafiltration nanocomposite membranes. Composit Part B Eng 154:388–409

    CrossRef  CAS  Google Scholar 

  61. Pang WY, Ahmad AL, Zaulkiflee ND (2019) Antifouling and antibacterial evaluation of ZnO/MWCNT dual nanofiller polyethersulfone mixed matrix membrane. J Environ Manag 249:109358. https://doi.org/10.1016/j.jenvman.2019.109358

    CrossRef  CAS  Google Scholar 

  62. Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    CrossRef  CAS  Google Scholar 

  63. Wang Z, Wu A, Ciacchi LC, Wei G (2018) Recent advances in nanoporous membranes for water purification. Nanomaterials 8(2):65. https://doi.org/10.3390/nano8020065

    CrossRef  CAS  Google Scholar 

  64. Ursino C, Castro-Muñoz R, Drioli E, Gzara L, Albeirutty MH, Figoli A (2018) Progress of nanocomposite membranes for water treatment. Membranes 8(2):18. https://doi.org/10.3390/membranes8020018

    CrossRef  CAS  Google Scholar 

  65. Yang SY, Park J, Yoon J, Ree M, Jang SK, Kim JK (2008) Virus filtration membranes prepared from nanoporous block copolymers with good dimensional stability under high pressures and excellent solvent resistance. Adv Funct Mater 18(9):1371–1377

    CrossRef  CAS  Google Scholar 

  66. Rieger KA, Cho HJ, Yeung HF, Fan W, Schiffman JD (2016) Antimicrobial activity of silver ions released from zeolites immobilized on cellulose nanofiber mats. ACS Appl Mater Interfaces 8(5):3032–3040

    CrossRef  CAS  Google Scholar 

  67. Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17

    CrossRef  Google Scholar 

  68. Gupta AK, Deva D, Sharma A, Verma N (2010) Fe-grown carbon nanofibers for removal of arsenic (V) in wastewater. Ind Eng Chem Res 49:7074–7084

    CrossRef  CAS  Google Scholar 

  69. Jung JY, Chung YC, Shin HS, Son DH (2004) Enhanced ammonia nitrogen removal using consistent biological regeneration and ammoniumexchange of zeolite in modified SBR process. Water Res 38:347–354

    CrossRef  CAS  Google Scholar 

  70. Homaeigohar S, Elbahri M (2017) Graphene membranes for water desalination. NPG Asia Mater 9:e427. https://doi.org/10.1038/am.2017.135

    CrossRef  CAS  Google Scholar 

  71. Abdullah N, Yusof N, Gohari RJ, Ismail AF, Jafar J, Lau WJ, Misdan N, Hairom NHH (2018) Characterizations of polysulfone/ferrihydrite mixed matrix membranes for water/wastewater treatment. Water Environ Res 90(1):64–73

    CrossRef  CAS  Google Scholar 

  72. Lalia BS, Kochkodan V, Hashaikeh R, Hilal N (2013) A review on membrane fabrication: structure, properties and performance relationship. Desalin 326:77–95

    CrossRef  CAS  Google Scholar 

  73. Liu SX, Kim JT (2011) Characterization of surface modification of polyethersulfone membrane. J Adhes Sci Technol 25(1–3):193–212

    CrossRef  CAS  Google Scholar 

  74. Gaaz T, Sulong A, Akhtar M, Kadhum A, Mohamad A, Al-Amiery A (2015) Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 20:22833–22847

    CrossRef  CAS  Google Scholar 

  75. Liu L, Kentish SE (2018) Pervaporation performance of crosslinked PVA membranes in the vicinity of the glass transition temperature. J Membr Sci 553:63–69

    CrossRef  CAS  Google Scholar 

  76. Marin E, Rojas J, Ciro Y (2014) A review of polyvinyl alcohol derivatives: Promising materials for pharmaceutical and biomedical applications. Afr J Pharm Pharmacol 8:674–684

    Google Scholar 

  77. Nataraj D, Sakkara S, Meghwal M, Reddy N (2018) Crosslinked chitosan films with controllable properties for commercial applications. Int J Biol Macromol 120:1256–1264

    CrossRef  CAS  Google Scholar 

  78. Liu QH, Fang Z, Zhang X, Zhang B (2009) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25(1):3–8

    CrossRef  CAS  Google Scholar 

  79. Elgadir MA, Uddin MS, Ferdosh S, Adam A, Chowdhury AJK, Sarker MZI (2015) Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J Food Drug Anal 23:619–629

    CrossRef  CAS  Google Scholar 

  80. More AS, Pasale SK, Wadgaonkar PP (2010) Synthesis and characterization of polyamides containing pendant pentadecyl chains. Eur Polym J 46(3):557–567

    CrossRef  CAS  Google Scholar 

  81. Buch P, Mohan DJ, Reddy A (2008) Preparation, characterization and chlorine stability of aromatic–cycloaliphatic polyamide thin film composite membranes. J Membr Sci 309:36–44

    CrossRef  CAS  Google Scholar 

  82. Yang R, Aubrecht KB, Ma H, Wang R, Grubbs RB, Hsiao BS, Chu B (2014) Thiol-modified cellulose nanofibrous composite membranes for chromium (VI) and lead (II) adsorption. Polymer 55:1167–1176

    CrossRef  CAS  Google Scholar 

  83. Bae J, Baek I, Choi H (2017) Efficacy of piezoelectric electrospun nanofiber membrane for water treatment. Chem Eng J 307:670–678

    CrossRef  CAS  Google Scholar 

  84. Homaeigohar S, Koll J, Lilleodden ET, Elbahri M (2012) The solvent induced interfiber adhesion and its influence on the mechanical and filtration properties of polyethersulfone electrospun nanofibrous microfiltration membranes. Sep Purif Technol 98:456–463

    CrossRef  CAS  Google Scholar 

  85. Zhou W, He J, Cui S, Gao W (2011) Preparation of electrospun silk fibroin/cellulose acetate blend nanofibers and their applications to heavy metal ions adsorption. Fibers Polym 12:431–437

    CrossRef  CAS  Google Scholar 

  86. Dobosz KM, Kuo-Leblanc CA, Martin TJ, Schiffman JD (2017) Ultrafiltration membranes enhanced with electrospun nanofibers exhibit improved flux and fouling resistance. Ind Eng Chem Res 56:5724–5733

    CrossRef  CAS  Google Scholar 

  87. Shen L, Yu X, Cheng C, Song C, Wang X, Zhu M, Hsiao BS (2016) High filtration performance thin film nanofibrous composite membrane prepared by electrospraying technique and hot-pressing treatment. J Membr Sci 499:470–479

    CrossRef  CAS  Google Scholar 

  88. Lee J, Yoon J, Kim JH, Lee T, Byun H (2018) Electrospun PAN–GO composite nanofibers as water purification membranes. J Appl Polym Sci 135:45858

    CrossRef  CAS  Google Scholar 

  89. Faccini M, Borja G, Boerrigter M, Martín DM, Crespiera SM, Vázquez-Campos S, Aubouy L, Amantia D (2015) Electrospun carbon nanofiber membranes for filtration of nanoparticles from water. J Nanomater 2015:247471. https://doi.org/10.1155/2015/247471

    CrossRef  CAS  Google Scholar 

  90. Makaremi M, Lim CX, Pasbakhsh P, Lee SM, Goh KL, Chang H, Chan ES (2016) Electrospun functionalized polyacrylonitrile–chitosan Bi-layer membranes for water filtration applications. RSC Adv 6:53882–53893

    CrossRef  CAS  Google Scholar 

  91. Kumar S, Venkatesh K, Gui EL, Jayaraman S, Singh G, Arthanareeswaran G (2018) Electrospun carbon nanofibers/TiO2-PAN hybrid membranes for effective removal of metal ions and cationic dye. Environ Nanotechnol Monit Manag 10:366–376

    Google Scholar 

  92. Obaid M, Mohamed HO, Yasin AS, Yassin MA, Fadali OA, Kim HY, Barakat NAM (2017) Under-oil superhydrophilic wetted PVDF electrospun modified membrane for continuous gravitational oil/water separation with outstanding flux. Water Res 123:52

    CrossRef  CAS  Google Scholar 

  93. Haddad MY, Alharbi HF, Karim MR, Aijaz MO, Alharthi NH (2018) Preparation of TiO2 incorporated polyacrylonitrile electrospun nanofibers for adsorption of heavy metal ions. J Polym Res 25:218

    Google Scholar 

  94. Surgutskaia NS, DiMartino A, Zednik J, Ozaltin K, Lovecká L, Bergerová ED, Kimmer D, Svoboda J, Sedlarik V (2020) Efficient Cu2+, Pb2+ and Ni2+ ion removal from wastewater using electrospun DTPA-modified chitosan/polyethylene oxide nanofibers. Sep Purif Technol 247:116914. https://doi.org/10.1016/j.seppur.2020.116914

  95. Wang Y, Górecki RP, Stamate E, Norrman K, Aili D, Zuo M, Guo W, Nielsen CH, Zhang W (2019) Preparation of super-hydrophilic polyphenylsulfone nanofiber membranes for water treatment. RSC Adv 9:278–286

    CrossRef  CAS  Google Scholar 

  96. Tai MH, Gao P, Tan BAY, Sun DD, Leckie JO (2014) Highly efficient and flexible electrospun carbon–silica nanofibrous membrane for ultrafast gravity-driven oil–water separation. ACS Appl Mater Interfaces 6(12):9393–9940

    CrossRef  CAS  Google Scholar 

  97. Wang N, Zhu Z, Sheng J, Al-Deyab SS, Yu J, Ding B (2014) Superamphiphobic nanofibrous membranes for effective filtration of fine particles. J Colloid Interface Sci 428:41–48

    CrossRef  CAS  Google Scholar 

  98. Zhang C, Huang M, Meng L, Li B, Cai T (2017) Electrospun polysulfone (PSf)/titanium dioxide (TiO2) nanocomposite fibers as substrates to prepare thin film forward osmosis membranes. J Chem Technol Biotechnol 92:2090–2097

    Google Scholar 

  99. Zhuo H, Hu J, Chen S, Yeung L (2008) Preparation of polyurethane nanofibers by electrospinning. J Appl Polym Sci 109:406–411

    CrossRef  CAS  Google Scholar 

  100. Jiříček T, Komárek M, Lederer T (2017) Polyurethane nanofiber membranes for waste water treatment by membrane distillation. J Nanotech 2017:7143035

    CAS  Google Scholar 

  101. Fuwad A, Ryu H, Malmstadt N, Kim SM, Jeon TJ (2019) Biomimetic membranes as potential tools for water purification: preceding and future avenues. Desalin 458:97–115

    CrossRef  CAS  Google Scholar 

  102. Kumar M, Grzelakowski M, Zilles J, Meier WP (2007) Highly permeable polymeric membranes based on the incorporation of the functional water channel protein aquaporin Z. Proc Natl Acad Sci U S A 104:20719–20724. https://doi.org/10.1073/pnas.0708762104

    CrossRef  Google Scholar 

  103. Xie W, He F, Wang B, Chung TS, Jeyaseelan K, Armugam A, Tong YW (2013) An aquaporin-based vesicle-embedded polymeric membrane for low energy water filtration. J Mater Chem A 1:7592–7600

    CrossRef  CAS  Google Scholar 

  104. Li Z, Linares RV, Bucs S, Fortunato L, Hélix-Nielsen C, Vrouwenvelder JS, Ghaffour N, Leiknes TO (2017) Aquaporin based biomimetic membrane in forward osmosis: chemical cleaning resistance and practical operation. Desalin 420:208–215

    CrossRef  CAS  Google Scholar 

  105. Camilleri-Rumbau MS, Soler-Cabezas JL, Christensen KV, Norddahl B, Mendoza-Roca JA, Vincent-Vela MC (2019) Application of aquaporin-based forward osmosis membranes for processing of digestate liquid fractions. Chem Eng J 371:583–592

    CrossRef  CAS  Google Scholar 

  106. He Y, Hoi H, Montemagno CD, Abraham S (2018) Functionalized polymeric membrane with aquaporin using click chemistry for water purification application: research article. J Appl Polym Sci 135:46678

    CrossRef  CAS  Google Scholar 

  107. Ruan W, Hu J, Qi J, Hou Y, Zhou C, Wei X (2019) Removal of dyes from wastewater by nanomaterials: a review. Adv Mater Lett 10(1):9–20

    CrossRef  CAS  Google Scholar 

  108. Jun JJ, Jia PX, Kun LZ, Bin F, Jun W, Wei ZC (2009) Removal of dyes from water by carbon nanotubes. Fresenius Environ Bulletin 18(5):615–618

    Google Scholar 

  109. Ma J, Yu F, Zhou L, Jin L, Yang M, Luan J, Tang Y, Fan H, Yuan Z, Chen J (2012) Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl Mater Interfaces 4(11):5749–5760

    CrossRef  CAS  Google Scholar 

  110. Hao X, Zhao J, Zhao Y, Ma D, Lu Y, Guo J, Zeng Q (2013) Mild aqueous synthesis of urchin-like MnOx hollow nanostructures and their properties for RhB degradation. Chem Eng J 229:134–143

    CrossRef  CAS  Google Scholar 

  111. Zhang P, Lo I, O’Connor D, Pehkonen S, Cheng H, Hou D (2017) High efficiency removal of methylene blue using SDS surface-modified ZnFe2O4 nanoparticles. J Colloid Interface Science 508:39–48

    CrossRef  CAS  Google Scholar 

  112. Xu Y, Yuan D, Bao J, Xie Y, He M, Shi Z, Chen S, He C, Zhao W, Zhao C (2018) Nanofibrous membranes with surface migration of functional groups for ultrafast wastewater remediation. J Mater Chem A 6(27):13359–13372

    CrossRef  CAS  Google Scholar 

  113. Zhang HT, Han J, Xue Y, Nie HL, Zhu, LM, Branford-White C (2009) Surface modification of electrospun nylon nanofiber based dye affinity membrane and its application to papain adsorption, ICBBE 2009. 3rd International Conference on 11–13 June 2009, Beijing, China. https://doi.org/10.1109/ICBBE.2009.5163544

  114. Rashidi HR, Sulaiman NMN, Hashim NA, Hassan CRC, Ramli MR (2014) Synthetic reactive dye wastewater treatment by using nano-membrane filtration. Desalin Water Treat 55(1):1–10

    Google Scholar 

  115. Wang J, Zhang P, Liang B, Liu Y, Xu T, Wang L, Cao B, Pan K (2016) Graphene oxide as effective barrier on a porous nanofibrous membrane for water treatment. ACS Appl Mater Interfaces 8(9):6211–6218

    CrossRef  CAS  Google Scholar 

  116. Manoukian M, Fashandi H, Tavakol H (2019) Polysulfone-highly uniform activated carbon sphere mixed-matrix membrane intended for efficient purification of dye wastewater. Mater Res Express 6(5):055313

    CrossRef  CAS  Google Scholar 

  117. Chaúque EFC, Dlamini LN, Adelodun AA, Greyling CJ, Ngila JC (2017) Electrospun polyacrylonitrile nanofibers functionalized with EDTA for adsorption of ionic dyes. Physics Chemistry of the Earth 100:201–211

    CrossRef  Google Scholar 

  118. Li N, Chen G, Zhao J, Yen B, Cheng Z, Meng L, Chen V (2019) Self-cleaning PDA/ZIF-67@PP membrane for dye wastewater remediation with peroxymonosulfate and visible light activation. J Membr Sci. 591:117341

    CrossRef  CAS  Google Scholar 

  119. Wang H, Wei Y (2017) Magnetic graphene oxide modified by chloride imidazole ionic liquid for the high-efficiency adsorption of anionic dyes. RSC Adv 7:9079–9089

    CrossRef  CAS  Google Scholar 

  120. Aluigi A, Rombaldoni F, Tonetti C, Jannoke L (2014) Study of methylene blue adsorption on keratin nanofibrous membranes. J Hazard Mater 268:156–165

    CrossRef  CAS  Google Scholar 

  121. Fard GC, Mirjalili M, Najafi F (2018) Preparation of nano-cellulose/Α-Fe2O3 hybrid nanofiber for the cationic dyes removal: optimization characterization, kinetic, isotherm and error analysis. Bulgarian Chem Commun 50:251–261

    Google Scholar 

  122. Lou L, Wang J, Lee YJ, Ramkumar SS (2019) Visible light photocatalytic functional TiO2/PVDF nanofibers for dye pollutant degradation. Part Part Syst Charact 36(9):1900091. (12 pages)

    Google Scholar 

  123. Chen L, Li N, Wen Z, Zhang L, Chen Q, Chen L, Si P, Feng J, Li YH, Lou J, Ci L (2018) Graphene oxide based membrane intercalated by nanoparticles for high performance nanofiltration application. Chem Eng J 347:12–18

    CrossRef  CAS  Google Scholar 

  124. Yu Y, Ma R, Yan S, Fang J (2018) Preparation of multi-layer nylon-6 nanofibrous membranes by electrospinning and hot pressing methods for dye filtration. RSC Adv 8:12173–12178

    CrossRef  CAS  Google Scholar 

  125. Akduman C, Kumbasar EPA, Morsunbul S (2017) Electrospun nanofiber membranes for adsorption of dye molecules from textile wastewater. IOP Conf Ser Mater Sci Eng 254:102001. https://doi.org/10.1088/1757-899X/254/10/102001

    CrossRef  Google Scholar 

  126. Lv C, Chen S, Xie Y, Wei Z, Chen L, Bao J, He C, Zhao W, Sun S, Zhao C (2019) Positively-charged polyethersulfone nanofibrous membranes for bacteria and anionic dyes removal. J Colloid Interface Sci 556:492–502

    CrossRef  CAS  Google Scholar 

  127. Sadasivam RK, Mohiyuddin S, Packirisamy G (2017) Electrospun polyacrylonitrile (PAN) templated 2D nanofibrous mats: a platform toward practical applications for dye removal and bacterial disinfection. ACS Omega 2(10):6556–6569

    CrossRef  CAS  Google Scholar 

  128. Fendi WJ, Naser JA (2018) Adsorption isotherms study of methylene blue dye on membranes from electrospun nanofibers. Orient J Chem 34(6):2884–2894

    CrossRef  CAS  Google Scholar 

  129. Xiong S, Kong L, Zhong Z, Wang Y (2016) Dye adsorption on zinc oxide nanoparticulates atomic-layer-deposited on polytetrafluoroethylene membranes. AIChE J 62:3982–3991

    CrossRef  CAS  Google Scholar 

  130. Foroozmehr F, Borhani S, Hosseini SA (2016) Removal of reactive dyes from wastewater using cyclodextrin functionalized polyacrylonitrile nanofibrous membranes. J Text Polym 4(1):45–52

    Google Scholar 

  131. Liang P, Qin PF, Lei M, Zeng QR, Song HJ, Yang J, Shao JH, Liao BH, Gu JD (2012) Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. J Hazard Mater 209:193–198

    Google Scholar 

  132. Chaudhary GR, Saharan P, Kumar A, Mehta SK, Mor S, Umar A (2013) Gamma-Fe2O3 nanospindles for environmental remediation: a study on the adsorption and desorption characteristics of acridine orange and direct red dyes. J Nanosci Nanotechnol 13:3240–3245

    Google Scholar 

  133. Absalan G, Asadi M, Kamran S, Sheikhian L, Douglas MG (2011) Removal of reactive red-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe3O4 magnetic nanoparticles using ionic liquid as modifier. J Hazard Mater 192(2):476–484

    CrossRef  CAS  Google Scholar 

  134. Zhang X, Zhang PWZ, Zhang L, Zeng G, Zhou C (2013) Adsorption of methylene blue onto humic acid-coated Fe3O4 nanoparticles. Colloids Surf A 435:85–90

    Google Scholar 

  135. Arslan M, Sayin S, Yilmaz M (2013) Removal of carcinogenic azo dyes from water by new cyclodextrin-immobilized iron oxide magnetic nanoparticle. Water Air Soil Poll 224(1):1527

    CrossRef  CAS  Google Scholar 

  136. Jamil N, Mehmood M, Lateef A, Nazir R, Ahsan N (2015) MgO nanoparticles for the removal of reactive dyes from wastewater. Adv Mater Tech Connect Briefs:353–356

    Google Scholar 

  137. Dhal JP, Sethi M, Mishra BG, Hota G (2015) MgO nanomaterials with different morphologies and their sorption capacity for removal of toxic dyes. Mater Lett 141:267–271

    CrossRef  CAS  Google Scholar 

  138. Daniel S, Shoba US (2015) Synthesis, characterization and adsorption behaviour of MgO nano particles on Rhodamine B dye. J Chem Pharma Res 7:713–723

    CAS  Google Scholar 

  139. Moazzam A, Jamil N, Nadeem F, Qadir A, Ahsan N, Zameer M (2017) Reactive dye removal by a novel biochar/mgo nanocomposite. J Chem Soc Pak 39(1):26–34

    CAS  Google Scholar 

  140. Yang ST, Chen S, Chang YL, Cao A, Liu YF, Wang HF (2011) Removal of methylene blue from aqueous solution by graphene oxide. J Colloid Interface Sci 359:24–29

    CrossRef  CAS  Google Scholar 

  141. Sun HM, Cao LY, Lu LH (2011) Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4:550–562

    CrossRef  CAS  Google Scholar 

  142. Shi XD, Ruan WQ, Hu JW, Fan MY, Cao RS, Wei XH (2017) Optimizing the removal of rhodamine B in aqueous solutions by reduced graphene oxide-supported nanoscale zerovalent iron (nZVI/rGO) using artificial neural network-genetic algorithm (ANN-GA). Nanomaterials. Nanomaterials 7(6):134

    CrossRef  CAS  Google Scholar 

  143. Zhang Y, Ou H, Liu H, Ke Y, Zhang W, Liao G, Wang D (2018) Polyimide-based carbon nanofibers: a versatile adsorbent for highly efficient removals of chlorophenols, dyes and antibiotics. Colloids Surf A Physicochem Eng Asp 537:92–101

    CrossRef  CAS  Google Scholar 

  144. Jethave G, Fegade U, Attarde S, Ingle S, Ghaedi M, Sabzehmeidani MM (2019) Exploration of the adsorption capability by doping Pb@ZnFe2O4 nanocomposites (NCs) for decontamination of dye from textile wastewater. Heliyon 5(9):e02412. https://doi.org/10.1016/j.heliyon.2019.e024

  145. Datta D, Kuyumcu ÖK, Bayazit ŞS, Salam MA (2017) Adsorptive removal of malachite green and rhodamine B dyes on Fe3O4-activated carbon composite. J Dispersion Sci Technol 38(11):1556–1562

    Google Scholar 

  146. Min M, Shen L, Hong G, Zhu M, Zhang Y, Wang X, Chen Y, Hsiao BS (2012) Micro-nano structure poly(ether sulfones)/poly(ethyleneimine) nanofibrous affinity membranes for adsorption of anionic dyes and heavy metal ions in aqueous solution. Chem Eng J 197:88–100

    CrossRef  CAS  Google Scholar 

  147. Chen S, Du Y, Zhang X, Xie Y, Shi Z, Ji H, Zhao C, Zhao W (2018) One-step electrospinning of negatively-charged polyethersulfone nanofibrous membranes for selective removal of cationic dyes. J Taiwan Inst Chem Eng 82:179–188

    CrossRef  CAS  Google Scholar 

  148. Zhan Y, Wan X, He S, Yang Q, He Y (2018) Design of durable and efficient poly(arylene ether nitrile)/bioinspired polydopamine coated graphene oxide nanofibrous composite membrane for anionic dyes separation. Chem Eng J 333:132–145

    CrossRef  CAS  Google Scholar 

  149. Zhang Y, Park SJ (2019) Fabrication of MoO3 nanowire-based membrane devices for the selective adsorption of cationic dyes from aqueous solutions with high performance and reusability. Micromachines 10(9):586. https://doi.org/10.3390/mi10

  150. Aizat MA, Aziz F (2019) Chapter 12. Chitosan nanocomposite application in wastewater treatments, in nanotechnology in water and wastewater treatment (theory and applications). Elsevier, pp 243–265

    Google Scholar 

  151. Pereira FAR, Sousa KS, Cavalcanti GGRS, França DB, Queiroga LNF, Santos IMG, Fonseca MG, Jaber M (2017) Green biosorbents based on chitosan-montmorillonite beads for anionic dye removal. Environ Chem Eng 5:3309–3318

    CrossRef  CAS  Google Scholar 

  152. Nagarpita MV, Roy P, Shruthi SB, Sailaja RRN (2017) Synthesis and swelling characteristics of chitosan and CMC grafted sodium acrylate-co-acrylamide using modified nanoclay and examining its efficacy for removal of dyes. Int J Biol Macromol 102:1226–1240

    CrossRef  CAS  Google Scholar 

  153. Abbasi M (2017) Synthesis and characterization of magnetic nanocomposite of chitosan/SiO2/carbon nanotubes and its application for dyes removal. J Clean Prod 145:105–113

    CrossRef  CAS  Google Scholar 

  154. Jiang Y, Gong JL, Zeng GM, Ou XM, Chang YN, Deng CH, Zhang J, Liu HY, Huang SY (2016) Magnetic chitosan–graphene oxide composite for anti-microbial and dye removal applications. Int J Biol Macromol 82:702–710

    CrossRef  CAS  Google Scholar 

  155. Wang Y, Xia G, Wu C, Sun J, Song R, Huang W (2015) Porous chitosan doped with graphene oxide as highly effective adsorbent for methyl orange and amido black 10B. Carbohydr Polym 115:686–693

    CrossRef  CAS  Google Scholar 

  156. Soltani RDC, Khataee AR, Safari M, Joo SW (2013) Preparation of bio-silica/chitosan nanocomposite for adsorption of a textile dye in aqueous solutions. Int Biodeterior Biodegrad 85:383–391

    CrossRef  CAS  Google Scholar 

  157. Fan L, Luo C, Sun M, Qiu H, Li X (2013) Synthesis of magnetic beta-cyclodextrin—chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids Surf B 103:601–607

    CrossRef  CAS  Google Scholar 

  158. Rickerby D, Morrison M (2007) Report from the workshop on nanotechnologies for environmental remediation. JRC Ispra. http://www.nanowerk.com/nanotechnology/reports/reportpdf/report101.pdf

  159. Kwon S, Fan M, Cooper A, Yang H (2008) Photocatalytic applications of micro- and nano-TiO2 in environmental engineering. Crit Rev Environ Sci Technol 38(3):197–226. https://doi.org/10.1080/10643380701628933

  160. Lee SS, Bai H, Liu Z, Sun DD (2013) Novel-structured electrospun TiO2 /CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater. Water Res 47:4059–4407

    Google Scholar 

  161. Liu Z, Sun DD, Guo P, Leckie JO (2007) An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett 7:1081–1085

    Google Scholar 

  162. Coleman HM, Eggins BR, Byrne JA, Palmer FL, King E (2000) Photocatalytic degradation of 17-ß-oestradiol. Appl Catal B Environ 24:L1–L5

    Google Scholar 

  163. Coleman HM, Routledge EJ, Sumpter JP, Eggins BR, Byrne JA (2004) Rapid loss of estrogenicity of steroid estrogens by UVA photolysis and photocatalysis over an immobilised titanium dioxide catalyst. Water Res 38:3233–3240

    Google Scholar 

  164. Jiang Y, Zhang P, Liu ZW, Xu F (2006) The preparation of porous nano- TiO2 with high activity and the discussion of the cooperation photocatalysis mechanism. Mater Chem Phy 99:498–504

    Google Scholar 

  165. Liu BS, Wen LP, Zhao XJ (2008) The study of photocatalysis under ultraviolet + visible two-beam light irradiation using undoped nano-titanium dioxide. Mater Chem Phy 112:35–40

    Google Scholar 

  166. Cui LF, Huang F, Niu MT, Zeng LW, Xu J, Wang Y (2010) A visible light active photocatalyst: nano-composite with Fe-doped anatase TiO2 nanoparticles coupling with TiO2(B) nanobelts. J Mol Catal A Chem 326:1–7

    Google Scholar 

  167. Liu BS, Zhao XJ (2010) A kinetic model for evaluating the dependence of the quantum yield of nano-TiO2 based photocatalysis on light intensity, grain size, carrier lifetime, and minority carrier diffusion coefficient: Indirect interfacial charge transfer. Electrochimica Acta 55:4062–4070

    Google Scholar 

  168. Sarasidis VC, Patsios SI, Karabelas AJ (2011) A hybrid photocatalysis—ultrafiltration continuous process: the case of polysaccharide degradation. Sep Purif Technol 80:73–80

    Google Scholar 

  169. Chen EZ, Su HJ, Zhang WY, Tan TW (2011) A novel shape-controlled synthesis of dispersed silver nanoparticles by combined bioaffinity adsorption and TiO2 photocatalysis. Powder Tech 212:166–172

    Google Scholar 

  170. Romanos GE, Athanasekou CP, Likodimos V, Aloupogiannis P, Falaras P (2013) Hybrid ultrafiltration/photocatalytic membranes for efficient water treatment. Ind Eng Chem Res 52:13938–13947. https://doi.org/10.1021/ie303475b

    CrossRef  CAS  Google Scholar 

  171. Kuvarega AT, Mamba BB (2016) Chapter 19. Photocatalytic membranes for efficient water treatment. In: Semiconductor photocatalysis—materials, mechanisms and applications. Intech Open, London

    Google Scholar 

  172. Bet-Moushoul E, Mansourpanah Y, Farhadi KH, Tabatabaei M (2016) TiO2 nanocomposite based polymeric membranes: a review on performance improvement for various applications in chemical engineering processe. Chem Eng J 283:29–46

    CrossRef  CAS  Google Scholar 

  173. Paz Y (2010) Application of TiO2 photocatalysis for air treatment: patents’ overview. Appl Catal B 99:448

    CrossRef  CAS  Google Scholar 

  174. Prahsarn C, Klinsukhon W, Roungpaisan N (2011) Electrospinning of PAN/DMF/H2O containing TiO2 and photocatalytic activity of their webs. Mater Lett 65:2498–2501

    CrossRef  CAS  Google Scholar 

  175. Watthanaarun J, Supaphol P, Pavarajarn V (2007) TiO2 functionalized nanofibrous membranes for removal of organic (micro) pollutants from water. J Nanosci Nanotechnol 7(7):2443–2450

    Google Scholar 

  176. Geltmeyer J, Teixido H, Meire M, Acker TV, Deventer K, Vanhaecke F, Hulle SV, Buysser KD, Clerck KD (2017) TiO2 functionalized nanofibrous membranes for removal of organic (micro) pollutants from water. Sep Purifi Technol 179:533–541

    Google Scholar 

  177. Rajak A, Munir MM, Mikrajuddin A, Khairurrijal K (2015) Photocatalytic activities of electrospun TiO2/styrofoam composite nanofiber membrane in degradation of waste water. Mater Sci Forum 827:7–12

    CrossRef  Google Scholar 

  178. Khan SH, Pathak B, Fulekar MH (2018) Synthesis, characterization and photocatalytic degradation of chlorpyrifos by novel Fe:ZnO nanocomposite material. Nanotechnol Environ Eng 3:13. https://doi.org/10.1007/s41204-018-0041-3

    CrossRef  CAS  Google Scholar 

  179. Hassani P (2017) NanoTechnology—Part of our everyday life in many forms (part-1). https://blogs.systweak.com/nanotechnology-part-of-our-everyday-life-in-many-forms/

  180. NNI. https://www.nano.gov/you/nanotechnology-benefits. Accessed 29 Apr 2019

  181. Ge J, Fu Q, Yu J, Ding B (2019) Chapter 13. Electrospun nanofibers for oil–water separation. In: Electrospinning: nanofabrication and applications (micro and nano technologies), pp 391–417

    Google Scholar 

  182. Gore PM, Purushothaman A, Naebe M, Wang X, Kandasubramanian B (2019) Nanotechnology for oil-water separation. In: Prasad R, Karchiyappan T (eds) Advanced research in nanosciences for water technology. Nanotechnology in the life sciences. Springer, Cham

    Google Scholar 

  183. Arora R, Balasubramanian K (2014) Hierarchically porous PVDF/nano-SiC foam for distant oil-spill cleanups. RSC Adv 4:53761–53767

    CrossRef  CAS  Google Scholar 

  184. Cao M, Luo X, Ren H, Feng J (2018) Hot water-repellent and mechanically durable superhydrophobic mesh for oil/water separation. J Colloid Interface Sci 512:567–574

    CrossRef  CAS  Google Scholar 

  185. Wang B, Guo Z (2013) Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing. Appl Phys Lett 103:063704

    CrossRef  CAS  Google Scholar 

  186. Xu Z, Jiang D, Wei Z, Chen J, Jing J (2018) Fabrication of superhydrophobic nano-aluminum films on stainless steel meshes by electrophoretic deposition for oil-water separation. Appl Surf Sci 427:253–261

    CrossRef  CAS  Google Scholar 

  187. Liu J, Li P, Chen L, Feng Y, He W, Yan X, Lü X (2016) Superhydrophilic and underwater superoleophobic modified chitosan-coated mesh for oil/water separation. Surf Coat Technol 307:171–176

    CrossRef  CAS  Google Scholar 

  188. Hou K, Zeng Y, Zhou C, Chen J, Wen X, Xu S, Cheng J, Lin Y, Pi P (2017) Durable underwater superoleophobic PDDA/halloysite nanotubes decorated stainless steel mesh for efficient oil–water separation. Appl Surf Sci 416:344–352

    CrossRef  CAS  Google Scholar 

  189. Yuan S, Chen C, Raza A, Song R, Zhang T-J, Pehkonen SO, Liang B (2017) Nanostructured TiO2 /CuO dual-coated copper meshes with superhydrophilic, underwater superoleophobic and self-cleaning properties for highly efficient oil/water separation. Chem Eng J 328:497–510

    Google Scholar 

  190. Al-Husaini IS, Yusoff ARM, Lau WJ, Ismail AF, Al-Abri MZ, Al-Ghafri BN, Wirzal MDH (2019) Fabrication of polyethersulfone electrospun nanofibrous membranes incorporated with hydrous manganese dioxide for enhanced ultrafiltration of oily solution. Sep Purifi Technol 212:205–214

    CrossRef  CAS  Google Scholar 

  191. Ao C, Yuan W, Zhao J, He X, Zhang X, Li Q, Xia T, Zhang W, Lu C (2017) Superhydrophilic graphene oxide@electrospun cellulose nanofiber hybrid membrane for high-efficiency oil/water separation. Carbohydr Polym 175:216–222

    CrossRef  CAS  Google Scholar 

  192. Islam MS, McCutcheon JR, Rahaman MS (2017) A high flux polyvinyl acetate-coated electrospun nylon 6/SiO2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance. J Membr Sci 537:297–309

    Google Scholar 

  193. Alayande SO, Dare EO, Msagati TAM, Akinlabi AK, Aiyedun PO (2016) Superhydrophobic and superoleophillic surface of porous beaded electrospun polystrene and polysytrene-zeolite fiber for crude oil-water separation. Phys Chem Earth 92:7–13

    CrossRef  Google Scholar 

  194. Makaremi M, De Silva RT, Pasbakhsh P (2015) Electrospun nanofibrous membranes of polyacrylonitrile/halloysite with superior water filtration ability. J Phys Chem C 119(14):7949–7958

    CrossRef  CAS  Google Scholar 

  195. Lin J, Shang Y, Ding B, Yang J, Yu J, Al-Deyab SS (2012) Nanoporous polystyrene fibers for oil spill cleanup. Marine Pollut Bull 64(2):347–352

    CrossRef  CAS  Google Scholar 

  196. Obaid M, Tolba GMK, Motlak M, Fadali OA, Khalil KA, Almajid AA, Kim B, Barak NAM (2015) Effective polysulfone-amorphous SiO2 NPs electrospun nanofiber membrane for high flux oil/water separation. Chem Eng J 279:631–663

    Google Scholar 

  197. Kahraman HT, Avci A, Pehlivan E (2019) Effective polysulfone-amorphous SiO2 NPs electrospun nanofiber membrane for high flux oil/water separation. Iranian Polym J 28:445–453

    Google Scholar 

  198. Crick CR, Gibbins JA, Parkin IP (2013) Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil–water separation. J Mater Chem A 1:5943–5948

    CrossRef  CAS  Google Scholar 

  199. Goh PS, Ismail AF, Hilal N (2016) Nano-enabled membranes technology: sustainable and revolutionary solutions for membrane desalination? Desalin 380(5):100–104

    CrossRef  CAS  Google Scholar 

  200. Roy S, Singha NR (2017) Polymeric nanocomposite membranes for next generation pervaporation process: strategies. Challenges and future prospects. Membranes 7(3):53

    CrossRef  CAS  Google Scholar 

  201. Ghanbari M, Emadzadeh D, Lau WJ, Matsuura T, Ismail AF (2015) Synthesis and characterization of novel thin film nanocomposite reverse osmosis membranes with improved organic fouling properties for water desalination. RSC Adv 5:21268–21276

    CrossRef  CAS  Google Scholar 

  202. Gong G, Nagasawa H, Kanezashi M, Tsuru T (2015) Reverse osmosis performance of layered-hybrid membranes consisting of an organosilica separation layer on polymer supports. J Membr Sci 494:104–112

    CrossRef  CAS  Google Scholar 

  203. Low ZX, Liu Q, Shamsaei E, Zhang X, Wang H (2015) Preparation and characterization of thin-film composite membrane with nanowire-modified support for forward osmosis process. Membranes 5:136–149

    CrossRef  CAS  Google Scholar 

  204. Mahdi N, Kumar P, Goswami A, Perdicakis B, Shankar K, Sadrzadeh M (2019) Robust polymer nanocomposite membranes incorporating discrete TiO2 nanotubes for water treatment. Nanomaterials 9(9):1186

    Google Scholar 

  205. Anjum M, Miandad R, Waqas M, Gehany F, Barakat MA (2019) Remediation of wastewater using various nano-material. Arabian J Chem 12(8):4897–4919

    CrossRef  CAS  Google Scholar 

  206. Kiani S, Mousavi SM, Shahtahmassebi N, Saljoughi E (2016) Preparation and characterization of polyphenylsulfone nanofibrous membranes for the potential use in liquid filtration. Desalin Water Treat 57:16250–16259

    CrossRef  CAS  Google Scholar 

  207. Kiani S, Mousavi SM, Saljoughi E, Shahtahmassebi N (2017) Novel high flux nanofibrous composite membrane based on polyphenylsulfone thin barrier layer on nanofibrous support. Fibers Polymers 18:1531–1544

    CrossRef  CAS  Google Scholar 

  208. Wang JJ, Yang HC, Wu MB, Zhang X, Xu ZK (2017) Nanofiltration membranes with cellulose nanocrystals as an interlayer for unprecedented performance. J Mater Chem A 5:16289–16295

    CrossRef  CAS  Google Scholar 

  209. Soyekwo F, Zhang Q, Gao R, Qu Y, Lin C, Huang X, Zhu A, Liu Q (2017) Cellulose nanofiber intermediary to fabricate highly-permeable ultrathin nano filtration membranes for fast water purification. J Membr Sci 524:174–185

    CrossRef  CAS  Google Scholar 

  210. Hosseini SM, Bagheripour E, Ansari M (2017) Adapting the performance and physico-chemical properties of PES nanofiltration membrane by using of magnesium oxide nanoparticles. Korean J Chem Eng 34(3):1–7

    Google Scholar 

  211. Zhao W, Liu H, Meng N, Zhang X (2018) Graphene oxide incorporated thin film nanocomposite membrane at low concentration monomers. J Membr Sci 565:380–389

    CrossRef  CAS  Google Scholar 

  212. Yin J, Kim ES, Yang J, Deng BL (2012) Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. J Membr Sci 423:238–246

    CrossRef  CAS  Google Scholar 

  213. Yin J, Zhu GC, Deng BL (2016) Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalin 379:93–101

    Google Scholar 

  214. Batchelder GW (1965) Process for the demineralization of water. US 3,171,799

    Google Scholar 

  215. Zheng H (2017) Chapter 1. General problems in seawater desalination. In: Solar energy desalination technology. Elsevier, pp 1–46

    Google Scholar 

  216. Ge QC, Su JC, Chung TS, Amy G (2011) Hydrophilic superparamagnetic nanoparticles: synthesis, characterization, and performance in forward osmosis processes. Ind Eng Chem Res 50(1):382–388

    CrossRef  CAS  Google Scholar 

  217. Liu ZY, Bai W, Lee J, Sun DD (2011) A low-energy forward osmosis process to produce drinking water. Science 4(7):2582–2585

    CAS  Google Scholar 

  218. Sun W, Shi J, Chen C, Li N, Xu Z, Li J, Lv H, Qian X, Zhao L (2018) A review on organic–inorganic hybrid nanocomposite membranes: a versatile tool to overcome the barriers of forward osmosis. RSC Adv 8:10040–10056

    CrossRef  CAS  Google Scholar 

  219. Arzhandi MRD, Sarrafzadeh MH, Goh PS, Lau WJ, Ismail AF, Mohamed MA (2018) Development of novel thin film nanocomposite forward osmosis membranes containing halloysite/graphitic carbon nitride nanoparticles towards enhanced desalination performance. Desalin 447:18–28

    CrossRef  CAS  Google Scholar 

  220. Ma N, Wei J, Qi S, Zhao Y, Gao Y, Tang CY (2013) Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes. J Membr Sci 441:54–62

    CrossRef  CAS  Google Scholar 

  221. Ling MM, Wang KY, Chung TS (2010) Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse. Ind Eng Chem Res 49(12):5869–5876

    CrossRef  CAS  Google Scholar 

  222. Song X, Wang L, Tang CY, Wang Z, Gao C (2015) Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process. Desalin 369:1–9

    CrossRef  CAS  Google Scholar 

  223. Loeb S (1975) Osmotic power plants. Science 189:654–655

    CrossRef  CAS  Google Scholar 

  224. Helfer F, Lemckert C, Anissimov YG (2014) Osmotic power with pressure retarded osmosis: theory, performance and trends—A review. J Membr Sci 453:337–358

    CrossRef  CAS  Google Scholar 

  225. Bræin S, Sandvik ØS, Skilhagen SE (2010) Osmotic power from prototype to industry—what will it take? In: 3rd International Conference on Ocean Energy, European Commission Enterprise and Industry Brokerage Event ICOE-2010 Marine Energy Bilbao, 6–7 October 2010

    Google Scholar 

  226. Li X, Zhang S, Fu F, Chung TS (2013) Deformation and reinforcement of thin-film composite (TFC) polyamide-imide (PAI) membranes for osmotic power generation. J Membr Sci 434:204–217

    CrossRef  CAS  Google Scholar 

  227. Yip N, Tiraferri A, Phillip WA, Schiffman JD, Hoover LA, Kim YC, Elimelech M (2011) Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environ Sci Techno 45(10):4360–4369

    CrossRef  CAS  Google Scholar 

  228. Han G, Zhang S, Li X, Chung TS (2013) High performance thin film composite pressure retarded osmosis (PRO) membranes for renewable salinity-gradient energy generation. J Membr Sci 440:108–121

    CrossRef  CAS  Google Scholar 

  229. Bui NN, McCutcheon JR (2014) Nanofiber supported thin-film composite membrane for pressure-retarded osmosis. Environ Sci Technol 48(7):4129–4136

    CrossRef  CAS  Google Scholar 

  230. Song X, Liu Z, Sun DD (2013) Energy recovery from concentrated seawater brine by thin-film nanofiber composite pressure retarded osmosis membranes with high power density. Energy Environ Sci 6(4):1199–1210

    CrossRef  CAS  Google Scholar 

  231. Sarp S, Li Z, Saththasivam J (2016) Pressure retarded osmosis (PRO): past experiences, current developments, and future prospects. Desalin 389:2–14

    CrossRef  CAS  Google Scholar 

  232. Wang Q, Li N, Bolto B, Hoang M, Xie Z (2016) Desalination by pervaporation: a review. Desalin 387:46–60

    CrossRef  CAS  Google Scholar 

  233. Rostovtseva V, Pulyalina A, Rudakova D, Vinogradova L, Polotskaya G (2020) Strongly selective polymer membranes modified with heteroarm stars for the ethylene glycol dehydration by pervaporation. Membranes 10(5):86

    CrossRef  CAS  Google Scholar 

  234. Liang B, Pan K, Li L, Giannelis EP, Cao B (2014) High performance hydrophilic pervaporation composite membranes for water desalination. Desalin 347:199–206

    CrossRef  CAS  Google Scholar 

  235. Chaudhri SG, Rajai BH, Singh PS (2015) Preparation of ultra-thin poly(vinyl alcohol) membranes supported on polysulfone hollow fiber and their application for production of pure water from seawater. Desalin 367:272–284

    CrossRef  CAS  Google Scholar 

  236. Liang B, Zhan W, Qi G, Lin S, Nan Q, Liu Y, Cao B, Pan K (2015) High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications. J Mater Chem A 3:5140–5147

    CrossRef  CAS  Google Scholar 

  237. Xie Z, Hoang M, Duong T, Ng D, Dao B, Gray S (2011) Sol–gel derived poly(vinyl alcohol)/maleic acid/silica hybrid membrane for desalination by pervaporation. J Membr Sci 383:96–103

    CrossRef  CAS  Google Scholar 

  238. Marian SA, Asghari M, Amini Z (2017) Desalination of Kashan city’s water using peba-based nanocomposite membranes via pervaporation. J Water Environ Nanotechnol 2(2):96–102

    CAS  Google Scholar 

  239. Yang G, Xie Z, Cran M, Ng D, Gray S (2019) Enhanced desalination performance of poly (vinyl alcohol)/carbon nanotube composite pervaporation membranes via interfacial engineering. J Membr Sci 579:40–51

    CrossRef  CAS  Google Scholar 

  240. Yalcinkaya F (2019) A review on advanced nanofiber technology for membrane distillation. J Eng Fibers Fabrics 14:1–12

    Google Scholar 

  241. Khayet MS, Matsuura T (2011) Membrane distillation: principles and applications. Elsevier. https://books.google.cz/books

  242. Wang P, Chung TS (2015) Recent advances in membrane distillation processes: membrane development, configuration design and application exploring. J Membr Sci 474:39–56

    CrossRef  CAS  Google Scholar 

  243. Shaulsky E, Nejati S, Boo C, Perreault F, Osuji CO, Elimelech M (2017) Post-fabrication modification of electrospun nanofiber mats with polymer coating for membrane distillation applications. J Membr Sci 530:158–165

    CrossRef  CAS  Google Scholar 

  244. Li L, Abadikhah H, Wang JW, Xu X, Agathopoulos S (2018) One-step synthesis of flower-like Si2N2O nanowires on the surface of porous SiO2 ceramic membranes for membrane distillation. Mater Lett 232:74–77

    Google Scholar 

  245. Larbot A, Gazagnes L, Krajewski S, Bukowska M, Kujawski W (2004) Water desalination using ceramic membrane distillation. Desalin 168:367–372

    CrossRef  CAS  Google Scholar 

  246. Cerneaux S, Struzyńska I, Kujawski WM, Persin M, Larbot A (2009) Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes. J Membr Sci 337:55–60

    CrossRef  CAS  Google Scholar 

  247. Subramanian N, Qamara A, Alsaadia A, Gallo A Jr, Ridwana MG, Lee JG, Pillai S, Arunachalama S, Anjum D, Sharipov F, Ghaffour N, Mishra H (2019) Evaluating the potential of superhydrophobic nanoporous alumina membranes for direct contact membrane distillation. J Colloid Interface Sci 533:723–732

    CrossRef  CAS  Google Scholar 

  248. Fan Y, Chen S, Zhao H, Liu Y (2017) Distillation membrane constructed by TiO2 nanofiber followed by fluorination for excellent water desalination performance. Desalin 405:51–58

    Google Scholar 

  249. Krajewski SR, Kujawski W, Bukowska M, Picard C, Larbot A (2006) Application of fluoroalkylsilanes (FAS) grafted ceramic membranes in membrane distillation process of NaCl solutions. J Membr Sci 281(1–2):253–259

    CrossRef  CAS  Google Scholar 

  250. Feng YC, Khulbe KC, Matsuura T, Gopal R, Kaur S, Ramakrishna S, Khayet M (2008) Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane. J Membr Sci 311(1–2):1–6

    CrossRef  CAS  Google Scholar 

  251. Nthunya LN, Gutierrez L, Derese S, Nxumalo EN, Verliefde AR, Mamba BB, Mhlanga SD (2019) A review of nanoparticle-enhanced membrane distillation membranes: membrane synthesis and applications in water treatment. J Chem Technol Biotechnol 94(9):2757–2771

    CrossRef  CAS  Google Scholar 

  252. Hao YQ, Wang YF, Weng YX (2008) Particle-size-dependent hydrophilic-ity of TiO2 nanoparticles characterized by Marcus reorganiza-tion energy of interfacial charge recombination. J Phys Chem C 112:8995–9000

    Google Scholar 

  253. Su CL, Chang JJ, Tang KX, Gao F, Li YP, Cao HB (2017) Novel three-dimensional superhydrophobic and strength-enhanced electrospun membranes for long-term membrane distillation. Sep Purif Technol 178:279–287

    CrossRef  CAS  Google Scholar 

  254. Sameh M, Nady N, El-Shazly A, Elmarghany MR, Na. Sabry M (2019) PES/PVDF blend membrane and its composite with graphene nanoplates: preparation, characterization, and water desalination via membrane distillation. Desalin Water Treat 166:9–23

    CrossRef  CAS  Google Scholar 

  255. Zahirifar J, Karimi-Sabet J, Moosavian SMA, Hadi A, Parsi PK (2018) Fabrication of a novel octadecylamine functionalized graphene oxide/PVDF dual-layer flat sheet membrane for desalination via air gap membrane distillation. Desalin 428:227–239

    CrossRef  CAS  Google Scholar 

  256. Zhang J, Song Z, Li B, Wang Q, Wang S (2013) Fabrication and characterization of superhydrophobic poly (vinylidene fluoride) membrane for direct contact membrane distillation. Desalin 324:1–9

    CrossRef  CAS  Google Scholar 

  257. Liao Y, Loh CH, Wang R, Fane AG (2014) Electrospun superhydrophobic membranes with unique structures for membrane distillation. ACS Appl Mater Interface 6(18):16035–16048

    CrossRef  CAS  Google Scholar 

  258. Yan KK, Jiao L, Lin S, Ji X, Lu Y, Zhang L (2018) Superhydrophobic electrospun nanofiber membrane coated by carbonnanotubes network for membrane distillation. Desalin 437:26–36

    CrossRef  CAS  Google Scholar 

  259. Chen W, Chen S, Liang T, Zhang Q, Fan Z, Yin H, Huang KW, Zhang X, Lai Z, Sheng P (2018) High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nature Nanotechnol 13:345–350

    CrossRef  CAS  Google Scholar 

  260. Razmjou A, Arifin E, Dong G, Mansouri J, Chen V (2012) Superhy-drophobic modification of TiO2 nanocomposite PVDF mem-branes for applications in membrane distillation. J Membr Sci 415–416:850–863

    Google Scholar 

  261. Ifome JE, Rana D, Matsuura T, Lan CQ (2016) Enhanced performance of PVDF nanocomposite membrane by nano fiber coating: a mem-brane for sustainable desalination through. Water Res 89:39–49

    CrossRef  CAS  Google Scholar 

  262. Wang Z, Hou D, Lin S (2016) Composite membrane with under water-oleophobic surface for anti- oil-fouling membrane distillation. Environ Sci Technol 50:3866–3874

    CrossRef  CAS  Google Scholar 

  263. Bonyadi S, Chung TS (2007) Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic–hydrophobic hollow fiber membranes. J Membr Sci 306:134–146

    CrossRef  CAS  Google Scholar 

  264. Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1:205–221

    CrossRef  CAS  Google Scholar 

  265. Modesti M, Boaretti C, Roso M (2015) Electrospun nanofibers for water and wastewater treatment applications. In: Drioli E, Giorno L (eds) Encyclopedia of membranes. Springer, Berlin

    Google Scholar 

  266. Yoshikawa M, Yoshioka T, Fujime J, Murakami A (2001) Pervaporation separation of MeOH/MTBE with hydrophilic polymer/agarose blended membranes. J Membr Sci 26:259–264

    CAS  Google Scholar 

  267. Safarik K, Pospiskova E, Baldikova I, Savva L, Vekas O, Marinica E, Tanasa T, Krasia-Christoforou T (2018) Fabrication and bioapplications of magnetically modified chitosan-based electrospun nanofibers. Electrospinning 2:29–39

    CrossRef  Google Scholar 

  268. Wang X, Yeh TM, Wang Z, Yang R, Wang R, Ma H, Hsiao BS, Chu B (2014) Nanofiltration membranes prepared by interfacial polymerization on thin-film nano fibrous composite scaffold. Polymer 55:1358–1366

    CrossRef  CAS  Google Scholar 

  269. Zeytuncu B, Akman S, Yucel O, Kahraman MV (2014) Preparation and characterization of UV-cured hybrid polyvinyl alcohol nanofiber membranes by electrospinning. Mater Res 17(3):565–569

    CrossRef  Google Scholar 

  270. Ren LF, Xia F, Chen V (2017) TiO2-FTCS modified super-hydrophobic PVDF electrospun nanofibrous membrane for desalination by direct contact membrane distillation. Desalin 423:1–11

    CrossRef  CAS  Google Scholar 

  271. Tijing LD, Woo YC, Shim WG, He T, Choi JS, Kim HS, Shon HK (2016) Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation. J Membr Sci 502(15):158–170

    CrossRef  CAS  Google Scholar 

  272. Ya KK, Jiao L, Lin S, Ji X, Lu Y, Zhang L (2018) Superhydrophobic electrospun nanofiber membrane coated by carbon nanotubes network for membrane distillation. Desalin 437:26–33

    CrossRef  CAS  Google Scholar 

  273. An AK, Lee EJ, Guo J, Jeong S, Lee JG, Ghaffour N (2017) Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibers. Sci Rep 7:41562

    CrossRef  CAS  Google Scholar 

  274. An X, Liu Z, Hu Y (2018) Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibers. Sci Rep 7:41562

    Google Scholar 

  275. Liao Y, Wang R, Tian M, Qiu C, Fane AG (2013) Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J Membr Sci 425–426:30–39

    CrossRef  CAS  Google Scholar 

  276. Khayet M, García-Payo MC, García-Fernández L, Contreras-Martínez J (2018) Dual-layered electrospun nanofibrous membranes for membrane distillation. Desalin 426:174–184

    CrossRef  CAS  Google Scholar 

  277. Woo YC, Chen Y, Tijing LD, Phuntsho S, He T, Choi JS, Kim SH, Shon K (2017) CF4 plasma-modified omniphobic electrospun nanofiber membranefor produced water brine treatment by membrane distillation. J Membr Sci 529:234–242

    Google Scholar 

  278. Dong ZQ, Ma XH, Xu ZL, Gu ZY (2015) Superhydrophobic modification of PVDF–SiO2 electrospun nanofiber membranes for vacuum membrane distillation. RSC Adv (83):67962–67970

    Google Scholar 

  279. Figoli A, Ursino C, Ramirez DOS, Carletto RAA, Tonetti C, Varesano A, De Santo MP, Cassano A, Vineis C (2019) Fabrication of electrospun keratin nanofiber membranes for air and water treatment. Polym Eng Sci 59(7):1472–1478

    CrossRef  CAS  Google Scholar 

  280. Li J, Chen X, Xu D, Pan K (2019) Immobilization of horseradish peroxidase on electrospun magnetic nanofibers for phenol removal. Ecotoxicol Environ Saf 170:716–721

    CrossRef  CAS  Google Scholar 

  281. Huang Y, Wang Z, Hou D, Lin S (2017) Coaxially electrospun superamphiphobic silica-based membrane for anti-surfactant-wetting membrane distillation. J Membr Sci 531:122–128

    CrossRef  CAS  Google Scholar 

  282. Lee E, Kyoungjin A, Hadi P, Lee S, Chul Y (2017) Advanced multi-nozzle electrospun functionalized titanium dioxide/composite membranes for direct contact membrane distillation. J Membr Sci 524:712–720

    CrossRef  CAS  Google Scholar 

  283. Attia H, Alexander S, Wright CJ, Hilal N (2017) Superhydrophobic electrospun membrane for heavy metals removal by air gap membrane distillation (AGMD). Desalination 420:318–329

    CrossRef  CAS  Google Scholar 

  284. Hou D, Lin D, Ding C, Wang D, Wang J (2017) Separation and purification technology fabrication and characterization of electrospun superhydrophobic PVDF-HFP/SiNPs hybrid membrane for membrane distillation. Sep Purif Technol 189:82–89

    CrossRef  CAS  Google Scholar 

  285. Mahdi S, Shahabadi S, Rabiee H, Mojtaba S, Mokhtare A, Brant JA (2017) Superhydrophobic dual layer functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PH) nano fibrous membrane for high flux membrane distillation. J Membr Sci 537:140–150

    Google Scholar 

  286. Prince JA, Singh G, Rana D, Matsuura T, Anbharasi V, Shanmugasundaram TS (2012) Preparation and characterization of highly hydrophobic poly (vinylidene fluoride)–Clay nanocomposite nanofiber membranes (PVDF-clay NNMs) for desalination using direct contact membrane distillation. J Membr Sci 397–398:80–86

    Google Scholar 

  287. Huang Y, Wang Z, Jin J, Lin S (2017) Superhydrophobic dual layer functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PH) nano fibrous membrane for high flux membrane distillation. Environ Sci Technol 51:13304–13310

    Google Scholar 

  288. Chul Y, Tijing LD, Shim W, Choi J, Kim S, He T, Drioli E, Shon HK (2016) Waterdesalination using graphene-enhanced electrospun nano fiber membrane via air gap membrane distillation. J Membr Sci 520:99–110

    Google Scholar 

  289. Lee E, Kyoungjin A, He T, Chul Y, Kyong H (2016) Electrospun nanofiber membranes incorporating fluorosilane-coated TiO2 nanocomposite for direct contact membrane distillation. J Membr Sci 520:145–154

    Google Scholar 

  290. Shalaby T, Mahmoud O, Al-Oufy A (2015) Antibacterial silver embedded nanofibers for water disinfection. Int J Mater Sci Appl 4:293–298

    Google Scholar 

  291. Li X, Qing W, Wu Y, Shao S, Peng LE, Yang Y, Wang P, Liu F, Tang CY (2019) Omniphobic nanofibrous membrane with pine-needle-like hierarchical nanostructures: toward enhanced performance for embrane distillation. ACS Appl Mater Interfaces 11(51):47963–47971

    CrossRef  CAS  Google Scholar 

  292. Du Y, Wang D, Wang W, Fu J, Chen X, Wang L, Yang W, Zhang X (2019) Electrospun nanofibrous polyphenylene oxide membranes for high-salinity water desalination by direct contact membrane distillation. ACS Sustain Chem Eng 7(24):20060–20069

    CrossRef  CAS  Google Scholar 

  293. Tlili I, Alkanhal TA (2019) Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment. J Water Reuse Desalin 9(3):232–248

    CrossRef  CAS  Google Scholar 

  294. Kober PA (1995) Pervaporation, perstillation and percrystallization. J Membr Sci 100(1):61–64

    CrossRef  CAS  Google Scholar 

  295. Farber L (1935) Applications of pervaporation. Science 82:58–158

    CrossRef  Google Scholar 

  296. Binning R, Lee R, Jennings J, Martin E (1961) Separation of liquid mixtures by permeation. Ind Eng Chem 53:45–50

    CrossRef  Google Scholar 

  297. Ong YK, Shi GM, Le NL, Tang YP, Zuo J, Nunes CTS (2016) Recent membrane development for pervaporation processes. Pro Polym Sci 57:1–31

    CrossRef  CAS  Google Scholar 

  298. Figoli A (2013) Separation of organic from organic components (pervaporation application). In: Drioli E, Giorno L (eds) Encyclopedia of membranes. Springer, Berlin

    Google Scholar 

  299. Roy S, Singha NR (2017) Review polymeric nanocomposite membranes for next generation pervaporation process: strategies, challenges and future prospects. Membranes 7:53

    CrossRef  CAS  Google Scholar 

  300. Niemistö J, Kujawski W, Keiski RL (2013) Pervaporation performance of composite poly(dimethyl siloxane) membrane for butanol recovery from model solutions. J Membr Sci 434:55–64

    CrossRef  CAS  Google Scholar 

  301. Kopec R, Meller M, Kujawski W, Kujawa J (2013) Polyamide-6 based pervaporation membranes for organic–organic separation. Sep Purif Technol 110:63–73

    CrossRef  CAS  Google Scholar 

  302. Peng F, Pan F, Sun H, Lu L, Jiang Z (2007) Novel nanocomposite pervaporation membranes composed of poly(vinyl alcohol) and chitosan-wrapped carbon nanotube. J Membr Sci 300:13–19

    CrossRef  CAS  Google Scholar 

  303. Shen JN, Chu YX, Ruan HM, Wu LG, Gao CJ, Van der Bruggen B (2014) Pervaporation of benzene/cyclohexane mixtures through mixed matrix membranes of chitosan and Ag+/carbon nanotubes. J Membr Sci 462:160–169

    Google Scholar 

  304. Penkova AV, Polotskaya GA, Gavrilova VA, Toikka AM, Liu JC, Trchova M, Slouf M, Pientka Z (2010) Polyamide membranes modified by carbon nanotubes: application for pervaporation. Sep Sci Technol 45(1):35–41

    CrossRef  CAS  Google Scholar 

  305. Liu K, Fang CJ, Li ZQ, Young M (2014) Separation of thiophene/n-heptane mixtures using PEBAX/PVDF-composited membranes via pervaporation. J Membr Sci 451:24–31

    CrossRef  CAS  Google Scholar 

  306. Sabzevari O, Marjani A, Daripour A (2016) Polyamide/nano mixed matrix membranes for pervaporation dehydration ethylene glycols. Oriental J Chem 31(2):1091–1098

    CrossRef  CAS  Google Scholar 

  307. Azimi H, Ebneyamini A, Tezel FH, Thibault J (2018) Separation of organic compounds from ABE model solutions via pervaporation using activated carbon/PDMS mixed matrix membranes. Membranes 8:40

    CrossRef  CAS  Google Scholar 

  308. Jose T, George SC, Maya MG, Thomas S (2015) Functionalized MWCNT and PVA nanocomposite membranes for dielectric and pervaporation applications. J Chem Eng Process Technol 6:233

    Google Scholar 

  309. Liu X, Cao Y, Li YX, Xu ZL, Li Z, Wang M, Ma XH (2019) High-performance polyamide/ceramic hollow fiber TFC membranes with TiO2 interlayer for pervaporation dehydration of isopropanol solution. J Membr Sci 576:26–35

    Google Scholar 

  310. Panahian S, Raisi A, Aroujalian A (2015) Multilayer mixed matrix membranes containing modified-MWCNTs for dehydration of alcohol by pervaporation process. Desalin 355:45–55

    CrossRef  CAS  Google Scholar 

  311. Kazemimoghadam M, Rigi ZA (2018) Evaluation and synthesis of nano-pore hydroxysodalite (hs) zeolite membranes: application to pervaporation of ethanol/water mixture. J Water Environ Nanotechnol 3(2):173–190

    CAS  Google Scholar 

  312. Zuo J, Wang Y, Chung TS (2013) Novel organic–inorganic thin film composite membranes with separation performance surpassing ceramic membranes for isopropanol dehydration. J Membr Sci 433:60–71

    CrossRef  CAS  Google Scholar 

  313. Wang J, Lia M, Zhoua S, Xuea A, Zhanga Y, Zhaoa Y, Zhong J (2018) Controllable construction of polymer/inorganic interface for poly(vinylalcohol)/graphitic carbon nitride hybrid pervaporation membranes. Chem Eng Sci 181:237–250

    CrossRef  CAS  Google Scholar 

  314. Liu G, Jiang Z, Cao K, Nair S, Cheng X, Zhao J, Gomaa H, Wu H, Pan F (2017) Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. J Membr Sci 523:185–196

    CrossRef  CAS  Google Scholar 

  315. Liu S, Liu G, Zhao X, Jin W (2013) Hydrophobic-ZIF-71 filled PEBA mixed matrix membranes for recovery of biobutanol via pervaporation. J Membr Sci 446:181–188

    CrossRef  CAS  Google Scholar 

  316. Sudhakar H, Prasad CV, Sunitha K, Rao KC, Subha M, Sridhar S (2011) Pervaporation separation of IPA-water mixtures through 4A zeolite-filled sodium alginate membranes. J Appl Polym Sci 121:2717–2725

    CrossRef  CAS  Google Scholar 

  317. Suhas DP, Aminabhavi TM, Raghu AV (2014) Mixed matrix membranes of H-ZSM5-loaded poly(vinyl alcohol) used in pervaporation dehydration of alcohols: influence of silica/alumina ratio. Polym Eng Sci 54:1774–1782

    CrossRef  CAS  Google Scholar 

  318. Sun H, Lu L, Chen X, Jiang Z (2008) Pervaporation dehydration of aqueous ethanol solution using H-ZSM-5 filled chitosan membranes. Sep Purif Technol 58:429–436

    CrossRef  CAS  Google Scholar 

  319. Cheng C, Li P, Shen K, Zhang T, Cao X, Wang B, Wang X, Hsiao BS (2018) Integrated polyamide thin-film nanofibrous composite membrane regulated by functionalized interlayer for efficient water/isopropanol separation. J Membr Sci 553:70–81

    CrossRef  CAS  Google Scholar 

  320. Suhas DP, Aminabhavi TM, Jeong HM, Raghu AV (2015) Hydrogen peroxide treated graphene as an effective nanosheet filler for separation application. RSC Adv 5:100984–100995

    CrossRef  CAS  Google Scholar 

  321. Zhao Q, Qian JW, Zhu CX, An QF, Xu TQ, Zheng Q, Song Y (2009) A novel method for fabricating polyelectrolyte complex/inorganic nanohybrid membranes with high isopropanol dehydration performance. J Membr Sci 345:233–241

    CrossRef  CAS  Google Scholar 

  322. Bakhtiari O, Mosleh S, Khosravi T, Mohammadi T (2012) Mixed matrix membranes for pervaporative separation of isopropanol/water mixtures. Desalin Water Treat 41:45–52

    CrossRef  CAS  Google Scholar 

  323. Veerapur RS, Gudasi KV, Aminabhavi TM (2008) Sodium alginate–magnesium aluminum silicate mixed matrix membranes for pervaporation separation of water–isopropanol mixtures. Sep Purif Technol 59(2):221–230

    CrossRef  CAS  Google Scholar 

  324. Jyothi MS, Reddy KR, Soontarapa K, Naveen S, Raghu AV, Kulkarni RV, Suhas DP, Shetti NP, Nadagouda MN, Aminabhavi TM (2019) Membranes for dehydration of alcohols via pervaporation. J Environ Manag 242:415–419

    CrossRef  CAS  Google Scholar 

  325. Adoor SG, Sairam M, Manjeshwar LS, Raju K, Aminabhavi TM (2006) Sodium montmorillonite clay loaded novel mixed matrix membranes of poly (vinyl alcohol) for pervaporation dehydration of aqueous mixtures of isopropanol and 1, 4-dioxane. J Membr Sci 285:182–195

    CrossRef  CAS  Google Scholar 

  326. Suhas DP, Raghu AV, Jeong HM, Aminabhavi TM (2013) Graphene loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via a pervaporation technique. RSC Adv 3:17120–17130

    CrossRef  CAS  Google Scholar 

  327. Suhas DP, Aminabhavi TM, Raghu AV (2014) Mixed matrix composite membranes of HZSM5 loaded poly(vinyl alcohol) used in pervaporation dehydration of alcohols: influence of silica/alumina ratio. Polym Eng Sci 54:1774–1782

    CrossRef  CAS  Google Scholar 

  328. Suhas DP, Aminabhavi TM, Raghu AV (2014) paraToluene sulfonic acid treated clay loaded sodium alginate membranes for enhanced pervaporative dehydration of IPA. Appl Clay Sci 101:419–429

    CrossRef  CAS  Google Scholar 

  329. Bhat SD, Mallikarjuna NN, Aminabhavi TN (2006) Microporous alumino-phosphate (AlPO4-5) molecular sieve-loaded novel sodium alginate composite membranes for pervaporation dehydration of aqueous–organic mixtures near their azeotropic compositions. J Membr Sci 282(1–2):473–483

    CrossRef  CAS  Google Scholar 

  330. Li SY, Srivastava R, Parnas RS (2010) Separation of 1-butanol by pervaporation using a novel tri-layer PDMS composite membrane. J Membr Sci 363:287–294

    CrossRef  CAS  Google Scholar 

  331. Liu L, Luo XB, Ding L, Luo SL (2019) Application of nanotechnology in the removal of heavy metal from water. Micro Nano Technol 4:83–147

    Google Scholar 

  332. Pereao OK, Bode-Aluko C, Ndayambaje G, Fatoba O, Petrik LF (2017) Application of nanotechnology in the removal of heavy metal from water. J Polym Environ 25:1175–1189

    CrossRef  CAS  Google Scholar 

  333. Fang J, Niu H, Lin T, Wang X (2008) Applications of electrospun nanofibers. Chinese Sci Bull 53(15):2265–2286

    CAS  Google Scholar 

  334. Lee CH, Chiang CL, Liu SJ (2013) Electrospun nanofibrous rhodanine/polymethylmethacrylate membranes for the removal of heavy metal ions. Sep Purif Technol 118:737

    CrossRef  CAS  Google Scholar 

  335. Huang Y, Ma H, Wang S, Shen M, Guo R, Cao X, Zhu M, Shi X (2012) Efficient catalytic reduction of hexavalent chromium using palladium nanoparticle-immobilized electrospun polymer nanofibers. ACS Appl Mater Interfaces 4(6):3054–3061

    CrossRef  CAS  Google Scholar 

  336. Ki CS, Gang EH, Um IC, Park YH (2007) Nanofibous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. J Membr Sci 302:20–26

    CrossRef  CAS  Google Scholar 

  337. Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50

    CrossRef  CAS  Google Scholar 

  338. Gore P, Khraisheh M, Kandasubramanian B (2018) Nanofibers of resorcinol–formaldehyde for effective adsorption of As (III) ions from mimicked effluents. Environ Sci Pollut Res 25:11729–11745

    CrossRef  CAS  Google Scholar 

  339. Chaúque EFC, Dlamini LN, Adelodun AA, Greyling CJ, Ngila JC (2016) EDTA for the removal of Cd and Cr ions from water effluents. Appl Surf Sci 369:19–28

    CrossRef  CAS  Google Scholar 

  340. Neghlani PK, Rafizadeh M, Taromi FA (2011) Preparation of aminated-polyacrilonitril nano fiber membranes for the adsorption of metal ions: comparison with microfiber. J Hazard Mater 186:182–189

    CrossRef  CAS  Google Scholar 

  341. Deng S, Bai R, Chen JP (2003) Aminated polyacrylonitrile fibers for lead and copper removal. Langmuir 19(12):5058–5064

    CrossRef  CAS  Google Scholar 

  342. Gohari RJ, Lau WJ, Matsuura T, Ismail AF (2013) Fabrication and characterization of novel PES/Fe–Mn binary oxide UF mixed matrix membrane for adsorptive removal of As(III) from contaminated water solution. Sep Purif Technol 118:64–72

    CrossRef  CAS  Google Scholar 

  343. Phan DN, Hasegawa Y, Song KH, Lee H, Kim IS (2018) Adsorption of silver ions from aqueous solution onto thiol modified polyvinyl alcohol nanofibers. Trends Textile Eng Fashion Technol 1(5):120–122

    Google Scholar 

  344. Cai Z, Song X, Zhang Q, Liu Y (2017) Amidoxime surface modification of polyindole nanofiber membrane for effective removal of Cr(VI) from aqueous solution. J Mater Sci 52(9):5417–5434

    CrossRef  CAS  Google Scholar 

  345. Xiao S, Luo X, Peng Q, Deb H (2016) Effective removal of calcium ions from simulated hard water using electrospun polyelectrolyte nanofibrous mats. Fibers Polymers 17(9):1428–1437

    CrossRef  CAS  Google Scholar 

  346. Chitpong N (2016) Functionalized cellulose nanofiber membranes for heavy metals removal from impaired waters. Dissertations, Ph.D. Thesis, Clemson University. https://tigerprints.clemson.edu/all_dissertations/1851

  347. Rasheed T, Adeel M, Nabeel F, Bilal M, Iqba H (2019) TiO2/SiO2 decorated carbon nanostructured materials as a multifunctional platform for emerging pollutants removal. Sci Total Environ 688:299–311

    Google Scholar 

  348. Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58(1):224–231

    Google Scholar 

  349. Azamat J, Khataee A, Joo SW (2014) Separation of a heavy metal from water through a membrane containing boron nitride nanotubes: molecular dynamics simulations. J Mol Model 20:2468

    Google Scholar 

  350. Razzaz A, Ghorban S, Hosayni L, Irani M, Alibadi M (2016) Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J Taiwan Inst Chem Eng 58:333–343

    Google Scholar 

  351. Anitha K, Namsani S, Singh JK (2015) Removal of heavy metal ions using a functionalized single-walled carbon nanotube: a molecular dynamics study. J Phys Chem A 119:8349–8358

    CrossRef  CAS  Google Scholar 

  352. Moradi O, Zare K, Yari M (2011) Interaction of some heavy metal ions with single walled carbon nanotube. Int J Nano Dim 1(3):203–220

    CAS  Google Scholar 

  353. Draouil H, Alvarez L, Causse J, Flaud V, Zaibi MA, Bantignies JL, Oueslati M, Cambedouzou J (2017) Copper hexacyano ferrate functionalized single-walled carbon nanotubes for selective cesium extraction. New J Chem 41:7705–7713

    CrossRef  CAS  Google Scholar 

  354. Naghizadeh A, Eivazi H (2015) Removal of lead and cobalt ions from aqueous solution by functionalized and non-functionalized carbon nanotubes. Journal of Behdasht dar Arseh (Journal of Health field) 3(1)

    Google Scholar 

  355. Zhang D, Yin Y, Liu L (2017) Removal of Hg2+and methylmercury in waters by functionalized multi-walled carbon nanotubes: adsorption behavior and the impacts of some environmentally relevant factors. Chem Spec Bioavail 29(1):161–169

    Google Scholar 

  356. Bankole MT, Abdulkareem AS, Mohammed IA, Ochigbo SS, Tijani JO, Abubakre OK, Roos WD (2019) Heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Sci Rep 9:4475

    CrossRef  CAS  Google Scholar 

  357. Corsi I, Fiorati A, Grassi G, Bartolozzi I, Daddi T, Melone L, Punta C (2018) Environmentally sustainable and ecosafe polysaccharide-based materials for water nano-treatment: an eco-design study. Materials (Basel) 11(7):1228

    CrossRef  CAS  Google Scholar 

  358. Wang H, Ding J, Lee B, Wang X, Lin T (2007) Polypyrrole-coated electrospun nanofibre membranes for recovery of Au(III) from aqueous solution. J Membr Sci 303(1–2):119–125

    CrossRef  CAS  Google Scholar 

  359. Badruddoza AZM, Shawon ZBZ, Daniel TWJ, Hidajat K, Uddin MS (2013) Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr Polym 91:322–332

    Google Scholar 

  360. Huang Y, Ma H, Wang S, Shen M, Guo R, Cao X, Zhu M, Shi X (2012) Efficient catalytic reduction of hexavalent chromium using palladium nanoparticle. ACS Appl Mater Interfaces 4(6):3054–3061

    CrossRef  CAS  Google Scholar 

  361. Ma H, Hsiao BS, Chu B (2013) Electrospun nanofibrous membrane for heavy metal ion adsorption. Curr Org Chem 17(13):1361–1370

    CrossRef  CAS  Google Scholar 

  362. Yang R, Su Y, Aubrecht KB, Wang X, Ma H, Grubbs RB, Hsiao BS, Chu B (2015) Thiol-functionalized chitin nanofibers for As(III) adsorption. Polymer 60:9–17

    CrossRef  CAS  Google Scholar 

  363. Wang K, Ma Q, Wang SD, Liu H, Zhang SZ, Bao W, Zhang KQ, Ling LZ (2016) Electrospinning of silver nanoparticles loaded highly porous cellulose acetate nanofibrous membrane for treatment of dye wastewater. Appl Phys A 122:40

    CrossRef  CAS  Google Scholar 

  364. Muthulakshmi AN, Anuradha J (2015) Removal of cadmium ions from water/waste water using chitosan—a review. Res Rev 9–14

    Google Scholar 

  365. He J, Matsuura T, Chen JP (2014) A novel Zr-based nanoparticle-embedded PSF blend hollow fiber membrane for treatment of arsenate contaminated water: material development, adsorption and filtration studies, and characterization. J Membr Sci 452:433–445

    CrossRef  CAS  Google Scholar 

  366. Khulbe KC, Matsuura T (2018) Removal of heavy metals and pollutants by membrane adsorption techniques. Appl Water Sci 8:19

    CrossRef  CAS  Google Scholar 

  367. Ritchie SMC, Bachas LG, Olin T, Sikdar SK, Bhattacharyya D (1999) Surface modification of silica- and cellulose-based microfiltration membranes with functional polyamino acids for heavy metal sorption. Langmuir 15(19):6346–6357

    CrossRef  CAS  Google Scholar 

  368. Wang R, Guan S, Sato A, Wang X, Wang Z, Yang R, Hsiao BS, Chu B (2013) Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J Membr Sci 446:376–382

    CrossRef  CAS  Google Scholar 

  369. He ZY, Nie HL, Branford-White C, Zhu LM, Zhou YT, Zheng Y (2008) Removal of Cu2+ from aqueous solution by adsorption onto a novel activated nylon-based membrane. Bioresour Technol 99:7954–7958

    Google Scholar 

  370. Chatterjee S, De S (2014) Adsorptive removal of fluoride by activated alumina doped cellulose acetate phthalate (CAP) mixed matrix membrane. Sep Purif Technol 125:223–238

    CrossRef  CAS  Google Scholar 

  371. Choi HY, Bae JH, Hasegawa Y, An S, Kim IS, Lee H, Kim M (2020) Thiol-functionalized cellulose nanofiber membranes for the effective adsorption of heavy metal ions in water. Carbohydr Polym 234:11588

    CrossRef  CAS  Google Scholar 

  372. Nomngongo PN, Ngila AJC, Musyoka SM, Msagati TAM, Moodley B (2013) A solid phase extraction procedure based on electrospun cellulose-g-oxolane-2,5-dione nanofibers for trace determination of Cd, Cu, Fe, Pb and Zn in gasoline samples by ICP-OES. Anal Methods 5:3000–3008

    CrossRef  CAS  Google Scholar 

  373. Krason J, Pietrzak R (2016) Membranes obtained on the basis of cellulose acetate and their use in removal of metal ions from liquid phase. Polish J Chem Technol 18(2):104–110

    CrossRef  CAS  Google Scholar 

  374. Chen JH, Li GP, Liu L, Ni JC, Wu WB, Lin JM (2010) Cr(III) ionic imprinted polyvinyl alcohol/sodium alginate (PVA/SA) porous composite membranes for selective adsorption of Cr(III) ions. Chem Eng J 165(2):465–447

    CrossRef  CAS  Google Scholar 

  375. Algarra M, Vázquez MI, Alonso B, Casado CM, Casado J, Benavente J (2014) Characterization of an engineered cellulose based membrane by thiol dendrimer for heavy metals removal. Chem Eng J 253:472–477

    CrossRef  CAS  Google Scholar 

  376. Katsoyiannis IA, Zouboulis AI (2002) Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated. polymeric materials. Water Res 36(20):5141–5515

    CrossRef  CAS  Google Scholar 

  377. Bessbousse H, Rhlalou T, Verchere JF, Lebrun L (2008) Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly (ethyleneimine) in a poly (vinyl alcohol) matrix. J Membr Sci 307:249–259

    CrossRef  CAS  Google Scholar 

  378. Hermassi M, Valderrama C, Gibert O, Moreno N, Font O, Querol X, Batis NH, Cortina JL (2016) Integration of powdered Ca-activated zeolites in a hybrid sorption−membrane ultrafiltration process for phosphate recovery. Ind Eng Chem Res 55(21):6204–6212

    Google Scholar 

  379. Saffaj N, Loukili H, Younssi SA, Albizane A, Bouhria M, Persin M, Larbot A (2004) Filtration of solution containing heavy metals and dyes by means of ultrafiltration membranes deposited on support made of Moroccan clay. Desalin 168:301–306

    CrossRef  CAS  Google Scholar 

  380. Mohamad Said KA, George GG, Mohamed Alipah NA, Ismail NZ, Jama’in RL, Mili N, Salleh SF, Mohamed Amin MA, Muslimen R, Yakub I, Mohamed Sutan N (2017) Effect of activated carbon in polysufone-polyethyleneimine-silver composite membrane towards adsorption of chromium (Cr), lead (Pb), silver (Ag) and cadmium (Cd) in synthetic wastewater. JMES 8(10):3740–3746

    Google Scholar 

  381. Zhang L, Zhou J, Zhou D, Tang Y (1999) Adsorption of cadmium and strontium on cellulose/alginic acid ion-exchange membrane. J Membr Sci 162:103–109

    CrossRef  CAS  Google Scholar 

  382. Yari S, Abbasizadeh S, Mousavi SE, Moghaddam MS, Moghaddam AZ (2015) Adsorption of Pb(II) and Cu(II) ions from aqueous solution by an electrospun CeO2 nanofiber adsorbent functionalized with mercapto groups. Process Environ Protect 94:159–171

    Google Scholar 

  383. Cai Y, Li C, Wu D, Wang W, Tanwrap F, Wang X, Wong PK (2017) Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution. Chem Eng J 312:158–166

    CrossRef  CAS  Google Scholar 

  384. Mehdizadeh S, Sadjadi S, Ahmadi SJ, Outokesh M (2014) Removal of heavy metals from aqueous solution using platinum nanopartcles/Zeolite-4A. J Environ Health Sci Eng 12:7

    CrossRef  CAS  Google Scholar 

  385. Al-Senani GM, Al-Fawzan FF (2018) Adsorption study of heavy metal ions from aqueous solution by nanoparticle of wild herbs. Egypt J Aquat Res 44(3):187–194

    CrossRef  Google Scholar 

  386. Rahmani A, Mousavi HZ, Fazli M (2010) Effect of nanostructure alumina on adsorption of heavy metals. Desalin 253:94–100

    CrossRef  CAS  Google Scholar 

  387. Dehghani MH, Taher MM, Bajpai AK, Heibati B, Tyagi I, Asif M, Agarwal S, Gupta VK (2015) Removal of noxious Cr (VI) ions using single-walled carbon nanotubes and multi-walled carbon nanotubes. Chem Eng J 279:344–352

    CrossRef  CAS  Google Scholar 

  388. Shaheen HA, Marwani HM, Soliman EM (2015) Selective adsorption of gold ions from complex system using oxidized multi-walled carbon nanotubes. J Mol Liq 21:480–486

    CrossRef  CAS  Google Scholar 

  389. Vuković GD, Marinković AD, Škapinc SD, Ristić MD, Aleksić R, Perić-Grujić AA, Uskoković PS (2011) Removal of lead from water by amino modified multi-walled carbon nanotubes. Chem Eng J 173(3):855–865

    CrossRef  CAS  Google Scholar 

  390. Xie Y, Huang Q, Liu MY, Wang K, Wan Q, Deng FJ, Lu L, Zhang XY, Wei Y (2015) Mussel inspired functionalization of carbon nanotubes for heavy metal ion removal. RSC Adv (84):68430–68438

    Google Scholar 

  391. Zhang XY, Huang Q, Liu MY, Tian JW, Zeng GJ, Li Z, Wang K, Zhang QS, Wan Q, Deng FJ, Wei Y (2015) Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2+ removal. Appl Surf Sci 343:19–27

    Google Scholar 

  392. Tajik S, Taher MA (2011) A new sorbent of modified MWCNTs for column preconcentration of ultratrace amounts of zinc in biological and water samples. Desalin 278:57–64

    CrossRef  CAS  Google Scholar 

  393. Ramana DKV, Yu JS, Seshaiah K (2013) A new sorbent of modified MWCNTs for column preconcentration of ultratrace amounts of zinc in biological and water samples. Surf Chem Eng J 223:806–815

    CAS  Google Scholar 

  394. Moghaddam HK, Pakizeh M (2015) Experimental study on mercury ions removal from aqueous solution by MnO2/CNTs nanocomposite adsorbent. J Ind Eng Chem 21:221–229

    Google Scholar 

  395. Tang WW, Zeng GM, Gong JL, Liu Y, Wang XY, Liu YY, Liu ZF, Chen L, Zhang XR, Tu DZ (2012) Simultaneous adsorption of atrazine and Cu (II) from wastewater by magnetic multi-walled carbon nanotube. Chem Eng J 211–212:470–478

    CrossRef  CAS  Google Scholar 

  396. Liu X, Huang YS, Duan SX, Wang YN, Li JX, Chen YT, Hayat T, Wang XK (2016) Graphene oxides with different oxidation degrees for Co(II) ion pollution management. Chem Eng J 302:763–772

    CrossRef  CAS  Google Scholar 

  397. Zhao GX, Li JX, Ren XM, Chen CL, Wang XK (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462

    CrossRef  CAS  Google Scholar 

  398. Sun YB, Wang Q, Chen CL, Tan XL, Wang XK (2012) Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ Sci Technol 46:6020–6027

    CrossRef  CAS  Google Scholar 

  399. Song WC, Hu J, Zhao YG, Shao DD, Li JX (2013) Efficient removal of cobalt from aqueous solution using β-cyclodextrin modified graphene oxide. RSC Adv 3:9514–9521

    CrossRef  CAS  Google Scholar 

  400. Alabi A, Hajaj AA, Cseri L, Szekely G, Budd P, Zou L (2018) Review of nanomaterials-assisted ion exchange membranes for electromembrane desalination. npj Clean Water 1:10

    CrossRef  CAS  Google Scholar 

  401. Hosseini SM, Jeddi F, Nemati M, Madaeni SS, Moghadassi AR (2014) Electrodialysis heterogeneous anion exchange membrane modified by PANI/MWCNT composite nanoparticles: preparation, characterization and ionic transport property in desalination. Desalin 341:107–114

    CrossRef  CAS  Google Scholar 

  402. Hosseini SM, Madaeni SS, Heidari AR, Amirimehr A (2012) Preparation and characterization of ion-selective polyvinyl chloride based heterogeneous cation exchange membrane. Desalin 284:191–199

    CrossRef  CAS  Google Scholar 

  403. Kowsari E, Zare A, Ansari V (2015) Phosphoric acid-doped ionic liquid-functionalized graphene oxide/sulfonated polyimide composites as proton exchange membrane. Int J Hydrog Energy 40:13964–13978

    CrossRef  CAS  Google Scholar 

  404. Gahlot S, Sharma PP, Gupta H, Kulshrestha V, Jha PK (2014) Preparation of graphene oxide nano-composite ion-exchange membranes for desalination application. RSC Advances (47):24662–24670

    Google Scholar 

  405. Zendehnam A, Arabzadegan M, Hosseini SM, Robatmili N, Madaeni SS (2013) Fabrication and modification of polyvinyl chloride based heterogeneous cation exchange membranes by simultaneously using Fe-Ni oxide nanoparticles and Ag nanolayer: physico-chemical and antibacterial characteristics. Korean J Chem Eng 30:1265–1271

    CrossRef  CAS  Google Scholar 

  406. Roman MFS, Bringas E, Ibanez R, Ortiz I (2010) Liquid membrane technology: fundamentals and review of its applications. J Chem Techno Biotechnol 85:2–10

    CrossRef  CAS  Google Scholar 

  407. Araki T, Tsukube H (1990) Liquid membranes: chemical applications. CRC Press, Boca Raton

    Google Scholar 

  408. Sharma PP, Kulshrestha V (2015) Synthesis of highly stable and high water retentive functionalized biopolymer-graphene oxide modified cation exchange membranes. RSC Adv 5:56498–56506

    CrossRef  CAS  Google Scholar 

  409. Klaysom C, Moon SH, Ladewig BP, Lu GQ, Wang L (2011) Synthesis of highly stable and high water retentive functionalized biopolymer-graphene oxide modified cation exchange membranes. J Phys Chem C 115(31):15124–15132

    CrossRef  CAS  Google Scholar 

  410. Martis EA, Badve RR, Degwekar MD (2012) Nanotechnology based devices and applications in medicine: an overview. Chron Young Scientist 3(1):65–73

    Google Scholar 

  411. Patel S, Bhirde AA, Rusling JF, Chen X, Gutkind JS, Patel V (2011) Nano delivers big: designing molecular missiles for cancer nano delivers big: designing molecular missiles for cancer therapeutics. Pharmaceutics 3:34–52

    CrossRef  CAS  Google Scholar 

  412. Adiga SP, Jin C, Curtiss LA, Monteiro-Riviere NA, Narayan RJ (2009) Nanoporous membranes for medical and biological applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(5):568–581

    CrossRef  CAS  Google Scholar 

  413. Brüggemann D (2013) Nanoporous aluminium oxide membranes as cell interfaces. J Nanomaterials 2013:460870

    CrossRef  CAS  Google Scholar 

  414. Irfan M, Irfan M, Idris A, Baig N, Saleh TA, Nasiri R, Iqbal Y, Muhammad N, Rehman F, Khalid H (2019) Fabrication and performance evaluation of blood compatible hemodialysis membrane using carboxylic multiwall carbon nano-tubes and low molecular weight polyvinylpyrrolidone based nanocomposites. J Biomed Mater Res Part A 2019(107A):513–525

    Google Scholar 

  415. Nuxoll EE, Hillmyer MA, Wang R, Leighton C, Siegel RA (2009) Composite block polymer-microfabricated silicon nanoporous membrane. ACS Appl Mater Interfaces 1(4):888–893

    CrossRef  CAS  Google Scholar 

  416. Ingham CJ, Maat JT, de Vos WM (2012) Where bio meets nano: the many uses for nanoporous aluminum oxide in biotechnology. Biotechnol Advan 30(5):1089–1099

    CrossRef  CAS  Google Scholar 

  417. Gultepe E (2010) Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Advan Drug Deliv Rev 62(3):305–315

    CrossRef  CAS  Google Scholar 

  418. Panda PK, Sahoo B (2013) Chapter 14. Synthesis and applications of electrospun nanofibers—a review. In: Navani NK, Sinha S, Govil JN (eds) Nanotechnology, fundamental and applications, vol. 1. Studiun Press LLC, pp 399–416

    Google Scholar 

  419. Arbanas C (2012) MD-PhD student starts nanotechnology company. Lead product is surgical mesh made of nanofibers. https://source.wustl.edu/2012/01/mdphd-student-starts-nanotechnology-company/. Accessed 30 Oct 2018

  420. Paddock C (2012) Nanotechnology in medicine: huge potential, but what are the risks? Medical News Today

    Google Scholar 

  421. Sundaramurthi D, Krishnan UM, Sethuraman S (2014) Electrospun nanofibers as scaffolds for skin tissue engineering. Polym Rev 54(2):348–376

    CrossRef  CAS  Google Scholar 

  422. Zhai Y, Su J, Ran W, Zhang P, Yin Q, Zhang Z, Yu H, Li Y (2017) Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics 7(10):2575–2592

    CrossRef  CAS  Google Scholar 

  423. Chen S, Liu B, Carlson MA, Gambart AF, Reilly DA, Xie J (2017) Recent advances in electrospun nanofibers for wound healing. Nanomedicine (London) 12(11):1335–1352

    CrossRef  CAS  Google Scholar 

  424. Hassiba AJ, El Zowalaty ME, Nasrallah GK, Webster TJ, Luyt AS, Abdullah AM, Elzatahry AA (2016) Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing. Nanomedicine (Lond) 11(6):715–737

    CrossRef  CAS  Google Scholar 

  425. Salata V (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnology 2(1):3

    CrossRef  Google Scholar 

  426. Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomedicine 1(1):15–30

    CrossRef  CAS  Google Scholar 

  427. Asmatulu R, Khan WS (2019) Chapter 11. Electrospun nanofibers for tissue engineering in synthesis and applications of electrospun nanofibers. In: Micro and nano technologies. Elsevier, pp 215–237

    Google Scholar 

  428. Mirjalili M, Zohoori S (2016) Review for application of electrospinning and electrospun nanofibers technology in textile industry. J Nanostruct Chem 6(3):207–213

    CrossRef  CAS  Google Scholar 

  429. Katti DS, Robinson KW, Ko FK, Laurenci CT (2004) Bioresorbable nanofiber based systems for wound healing and drug delivery: optimisation of fabrication parameters. J Biomed Mater Res 70:282–296

    Google Scholar 

  430. Yunshin S, Park HN, Kim KH (2005) Biologic evaluation of chitosan nanofiber membrane for guided bone regeneration. J Periodontol 76:1778–1784

    CrossRef  Google Scholar 

  431. Liu S, Wang X, Zhang Z, Zhang Y, Zhou G, Huang Y, Xie Z, Jing X (2015) Use of asymmetric multilayer polylactide nanofiber mats in controlled release of drugs and prevention of liver cancer recurrence after surgery in mice. Nanomed Nanotechnol Biol Med 11(5):1047–1056

    CrossRef  CAS  Google Scholar 

  432. Ni S, Fan X, Wang J, Qi H, Li X (2014) Biodegradable implants efficiently deliver combination of paclitaxel and temozolomide to glioma c6 cancer cells in vitro. Ann Biomed Eng 42(1):214–221

    CrossRef  Google Scholar 

  433. Duan YY, Jia J, Wang SH, Yan W, Jin L, Wang ZY (2007) Preparation of antimicrobial poly(ϵ-caprolactone) electrospun nanofibers containing silver-loaded zirconium phosphate nanoparticles. J Appl Polym Sci 106(2):1208–1214

    CrossRef  CAS  Google Scholar 

  434. Ignatova M, Manolova N, Rashkov I (2007) Electrospinning of poly(vinyl pyrrolidone)–iodine complex and poly(ethylene oxide)/poly(vinyl pyrrolidone)–iodine complex—a prospective route to antimicrobial wound dressing materials. Eur Polym J 43(5):1609–1623

    CrossRef  CAS  Google Scholar 

  435. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21

    CrossRef  CAS  Google Scholar 

  436. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006

    CrossRef  CAS  Google Scholar 

  437. Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI (2005) Electrospun protein fibers as matrices for tissue engineering. Biomaterials 26(30):5999–6008

    CrossRef  CAS  Google Scholar 

  438. Woerdeman DL, Ye P, Shenoy S, Wnek GE, Trofimova O (2005) Electrospun fibers from wheat protein: investigation of the interplay between molecular structure and the fluid dynamics of the electrospinning process. Biomacromolecules 6:707–712

    CrossRef  CAS  Google Scholar 

  439. Boland ED, Matthews JA, Pawlowski KJ, Simpson DG, Wnek GE, Bowlin GL (2004) Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci 1(9):1422–1432

    CrossRef  Google Scholar 

  440. Abrigo M, McArthur SL, Kingshott P (2014) Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol Biosci 14(6):772–729

    CrossRef  CAS  Google Scholar 

  441. Xue J, Xie J, Liu W, Xia Y (2017) Electrospun nanofibers: new concepts, materials, and applications. ACC Chem Res 50(8):1976–1987

    CrossRef  CAS  Google Scholar 

  442. Liu Y, Zhou S, Gao Y, Zhai Y (2019) Review: electrospun nanofibers as a wound dressing for treating diabetic foot ulcer. Asian J Pharm Sci 14(2):130–143

    CrossRef  Google Scholar 

  443. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review onpolymer nanofibers by electrospinning and their applications in nano composites. Composite Sci Technol 63:2223–2253

    CrossRef  CAS  Google Scholar 

  444. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96:557–569

    CrossRef  CAS  Google Scholar 

  445. Liu X, Lin T, Gao Y, Xu Z, Huang C, Yao G, Jiang L, Tang Y, Wang X (2012) Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing. J Biomed Mater Res B Appl Biomater 100(6):1556–1565

    CrossRef  CAS  Google Scholar 

  446. Yang D, Li Y, Nie J (2007) Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohydr Polym 69(3):538–543

    CrossRef  CAS  Google Scholar 

  447. Chong EJ, Phan TT, Lim IJ (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater 3(3):321–330

    CrossRef  CAS  Google Scholar 

  448. Yohe ST, Herrera VLM, Colson YL, Grinstaff MW (2012) 3D superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells. J Control Release 162(1):92–101

    CrossRef  CAS  Google Scholar 

  449. Qiu K, He C, Feng W, Wang W, Zhou X, Yin Z, Chen L, Wang H, Mo X (2013) Doxorubicin-loaded electrospun poly(l-lactic acid)/mesoporous silicananoparticles composite nanofibers for potential postsurgical cancer treatment. J Mater Chem B 1(36):4601

    CrossRef  CAS  Google Scholar 

  450. Chen P, Wu Q, Ding Y, Chu M, Huang Z, Hu W (2010) A controlled release system of titanocene dichloride by electrospun fiber and its anti-tumor activity in vitro. Eur J Pharm Biopharm 76(3):413–420

    CrossRef  CAS  Google Scholar 

  451. Kim YJ, Bae HI, Kwon OK, Choi MS (2009) Three-dimensional gastric cancer cell culture using nanofiber scaffold for chemosensitivity test. Int J Biol Macromol 45(1):65–71

    CrossRef  CAS  Google Scholar 

  452. Ma G, Liu Y, Peng C, Fang D, He B, Nie J (2011) Paclitaxel loaded electrospun porous nanofibers as mat potential application for chemotherapy against prostate cancer. Carbohydr Polym 86(2):505–551

    CrossRef  CAS  Google Scholar 

  453. Ignatova M, Yossifova L, Gardeva E, Manolova N, Toshkova R, Rashkov I, Alexandrov M (2011) Antiproliferative activity of nanofibers containing quaternized chitosan and/or doxorubicin against MCF7 human breast carcinoma cell line by apoptosis. J Bioact Compat Polym 26(6):539–551

    CrossRef  CAS  Google Scholar 

  454. Vashisth P, Kumar N, Sharma M, Pruthi V (2015) Biomedical applications of ferulic acid encapsulated electrospun nanofibers. Biotechnol Rep 8:36–44

    CrossRef  Google Scholar 

  455. Wei J, Hu J, Li M, Chen Y, Chen Y (2014) Multiple drug-loaded electrospun PLGA/gelatin composite nanofibers encapsulated with mesoporous ZnO nanospheres for potential postsurgical cancer treatment. RSC Adv 4(53):28011–28019

    CrossRef  CAS  Google Scholar 

  456. Milane L, Duan Z, Amiji M (2011) Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol Pharm 8(1):185–203

    CrossRef  CAS  Google Scholar 

  457. Huang D, Lin C, Wen X, Gu S, Zhao P (2016) A potential nanofiber membrane device for filling surgical residual cavity to prevent glioma recurrence and improve local neural tissue reconstruction. PLoS One 11(8):e0161435

    CrossRef  CAS  Google Scholar 

  458. Molday RS, MacKenzie D (1982) Immunospecific ferromagnetic iron dextran reagents for the labeling and magnetic separation of cells. J Immunol Methods 52:353–367

    CrossRef  CAS  Google Scholar 

  459. Chen S, Liu B, Carlson MA, Gambart AF, Reilly DA, Xie J (2017) Recent advances in electrospun nanofibers for wound healing. Nanomedicine (Lond) 12(11):1335–1352

    CrossRef  CAS  Google Scholar 

  460. Fang RH, Kroll AV, Gao W, Zhang L (2018) Cell membrane coating nanotechnology. Adv Mater 30(23):e1706759

    CrossRef  CAS  Google Scholar 

  461. Esmaeili N, Gray EMA, Webb CJ (2019) Non-fluorinated polymer composite proton exchange membranes for fuel cell applications—a review. Chemphyschem 20(16):2016–2053

    CAS  Google Scholar 

  462. Choi BG, Huh YS, Park YC, Jung DH, Hong WH, Park HS (2012) Enhanced transport properties in polymer electrolyte composite membranes with graphene oxide sheets. Carbon 50(15):5395–5402

    CrossRef  CAS  Google Scholar 

  463. Mishra AK, Bose S, Kuila T, Kim NH, Lee JH (2012) Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells. Prog Polym Sci 37:842–869

    CrossRef  CAS  Google Scholar 

  464. Kim DJ, Jo MJ, Nam SY (2015) A review of polymer–nanocomposite electrolyte membranes for fuel cell application. J Ind Eng Chem 21:36–52

    CrossRef  CAS  Google Scholar 

  465. Cao YC, Xu C, Wu X, Wang X, Xing L, Scott K (2011) A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells. J Power Sources 196:8377–8382

    CrossRef  CAS  Google Scholar 

  466. Hooshyari K, Javanbakht M, Shabanikia A, Enhessari M (2015) Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells. J Power Sources 276:62–72

    CrossRef  CAS  Google Scholar 

  467. Hooshyari K, Javanbakht M, Naji L, Enhessari M (2014) Nanocomposite proton exchange membranes based on Nafioncontaining Fe2TiO5nanoparticles in water and alcohol environmentsfor PEMFC. J Membr Sci 454:74–81

    CrossRef  CAS  Google Scholar 

  468. Sigwadi R, Dhlamini MS, Mokrani T, Ṋemavhola F, Nonjola PF, Msomi PF (2019) The proton conductivity and mechanical properties of Nafion®/ZrP nanocomposite membrane. Heliyon 5(8):e02240

    CrossRef  CAS  Google Scholar 

  469. Luo M, Wen Q, Liu J, Liu H, Jia Z (2011) Fabrication of SPES/nano-TiO2 composite ultrafiltration membrane and its anti-fouling mechanism. Chin J Chem Eng 19:45–51

    CrossRef  CAS  Google Scholar 

  470. Salarizadeh P, Javanbakht M, Pourmahdian S (2017) Enhancing the performance of SPEEK polymer electrolyte membranes using functionalized TiO2 nanoparticles with proton hopping sites. RSC Adv 7:8303–8313

    CrossRef  CAS  Google Scholar 

  471. Shabanikia A, Javanbakht M, Amoli H, Hooshyari K, Enhessari M (2015) Novel nanocomposite membranes based on polybenzimidazole and Fe2TiO5 nanoparticles for proton exchange membrane fuel cells. Ionics 21:2227–2236

    CrossRef  CAS  Google Scholar 

  472. Namazi H, Ahmadi H (2011) Improving the proton conductivity and water uptake of polybenzimidazole-based proton exchange nanocomposite membranes with TiO2 and SiO2 nanoparticles chemically modified surfaces. J Power Sources 196(5):2573–2583

    CrossRef  CAS  Google Scholar 

  473. Vinodh R, Purushothaman M, Sangeetha D (2011) Novel quaternized polysulfone/ZrO2 composite membranes for solid alkaline fuel cell applications. Int J Hydrogen Energy 36(12):7291–7302

    CrossRef  CAS  Google Scholar 

  474. Chan S, Jankovic J, Susac D, Saha M, Tam M, Yang H, Ko F (2018) Electrospun carbon nanofiber catalyst layers for polymer electrolyte membrane fuel cells: structure and performance. J Power Sources 392:239–250

    CrossRef  CAS  Google Scholar 

  475. Wei M, Jiang M, Liu X, Wang M, Mu S (2016) Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance. J Power Sources 327:384–393

    CrossRef  CAS  Google Scholar 

  476. Chuang SW, Hsu SLC, Liu YH (2007) Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells. J Membr Sci 305:353–363

    CrossRef  CAS  Google Scholar 

  477. Jang SS, Goddard WA (2019) Computational nanotechnology approach—JOUR. https://www.researchgate.net/publication/266607736

  478. Tsuchiya M, Lai B, Ramanathan S (2011) Scalable nanostructured membranes for solid-oxide fuel cells. Nature Nanotech 6:282–286

    CrossRef  CAS  Google Scholar 

  479. Zhang M, Zhao X, Zhang G, Wei G, Su Z (2017) Electrospinning design of functional nanostructures for biosensor applications. J Mater Chem B 5:1699–1711

    CrossRef  CAS  Google Scholar 

  480. Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A (2019) Molecularly imprinted polymer based sensors for medical applications. Sensors (Basel) 19(6):1279

    CrossRef  CAS  Google Scholar 

  481. Zhang X, Yang S, Jiang R, Sun L, Pang P, Luo A (2018) Fluorescent molecularly imprinted membranes as biosensor for the detection of target protein. Sens Actuat B Chem 524:1078–1086

    CrossRef  CAS  Google Scholar 

  482. Say R, Keçili R, Denizli A, Ersöz A (2016) Biomimetic imprinted polymers: theory, design methods, and catalytic applications. Molecularly imprinted catalysts (Principles, syntheses, and applications), pp 103–120

    Google Scholar 

  483. Li S, Cao S, Piletsky SA, Turner APF (2016) Molecularly imprinted catalysts Elsevier, pp 295

    Google Scholar 

  484. Irshad M, Iqbal N, Mujahid A, Afzal A, Hussain T, Sharif A, Ahmad E, Athar MM (2013) Molecularly imprinted nanomaterials for sensor applications. Nanomaterials (Basel) 3(4):615–637

    CrossRef  CAS  Google Scholar 

  485. Tancharoen C, Sukjee W, Thepparit C, Jaimipuk T, Auewarakul P, Thitithanyanont A, Sangma C (2019) An electrochemical biosensor based on surface imprinting for zika virus detection in serum. ACS Sens 4:69–75

    CrossRef  CAS  Google Scholar 

  486. Nano.Gov; NNI. https://www.nano.gov/you/nanotechnology-benefits. Accessed 29 Apr 2019

  487. Bogue R (2004) Nanotechnology: what are the prospects for sensors? Sensor Rev 24(3):253–260

    CrossRef  Google Scholar 

  488. Yavari F, Chen Z, Thomas AV, Ren W, Cheng HM, Koratkar N (2011) High sensitivity gas detection using a macroscopic three-dimensional graphene. Sci Rep 1:166

    CrossRef  CAS  Google Scholar 

  489. Iyengar SA, Pillalamarri S, Jana SK, Islam MR, Ahuja T, Mohanty JS, Pradeep T (2019) Surface treated nanofibers for high current yielding breath humidity sensors for wearable electronics. ACS Appl Electron Mater. https://doi.org/10.1021/acsaelm.9b00123; http://pubs.acs.org. Accessed 11 Jun 2020

  490. Khalid MAU, Ali M, Soomro AM, Kim SW, Kim HB, Choi KH (2019) A highly sensitive biodegradable pressure sensor based on nanofibrous dielectric. Sens Actuat A Phys 294:140–147

    CrossRef  Google Scholar 

  491. Asmatulu R, Veisi Z, Uddin MN, Mahapatro A (2019) Highly sensitive and reliable electrospun polyaniline nanofiber based biosensor as a robust platform for COX-2 enzyme detections. Fibers Polym 20(5):966–974

    CrossRef  CAS  Google Scholar 

  492. Song K, Zhang P, Huang Y, Xu F, Ding YI (2018) Electrospun PU/PVP/GO separator for Li-ion batteries. J Membr Sci 555:1–6

    CrossRef  CAS  Google Scholar 

  493. Perkins FK, Friedman AL, Cobas E, Campbell PM, Jernigan GG, Jonker BT (2013) Chemical vapor sensing with monolayer MoS2. Nano Lett 13(2):668–673

    CrossRef  CAS  Google Scholar 

  494. Liu K, Zhang Z, Shan CX, Feng ZQ, Li JS, Song CL, Bao YN, Qi XH, Dong B (2016) A flexible and super hydrophobic upconversion-luminescence membrane as an ultrasensitive fluorescence sensor for single droplet detection. Light Sci Appl 5:e16136

    CrossRef  CAS  Google Scholar 

  495. Liu X, Ma T, Xu Y, Sun L, Zheng L, Schmidt OG, Zhang J (2018) Rolled-up SnO2 nanomembranes: a new platform for efficient gas sensors. Sens Actuat B Chem 264:92–99

    CrossRef  CAS  Google Scholar 

  496. Grimm D, Bufon C, Deneke P, Atkinson DJ (2013) Rolled-up nanomembranes as compact 3D architectures for field effect transistors and fluidic sensing applications. Nano Lett 3(1):213–218

    CrossRef  CAS  Google Scholar 

  497. Kim YR, Jung S, Ryu H, Yoo YE, Kim SM, Jeon TJ (2012) Synthetic biomimetic membranes and their sensor applications. Sensors (Basel) 12(7):9530–9550

    CrossRef  CAS  Google Scholar 

  498. Soutter W (2019) Nanotechnology in agriculture. AZoNano. https://www.azonano.com/article.aspx?ArticleID=3141. Accessed 3 Nov 2019

  499. Patil K, Jeong S, Lim H, Byun HS, Han S (2019) Removal of volatile organic compounds from air using activated carbon impregnated cellulose acetate electrospun mats. Environ Eng Res 24. https://doi.org/10.4491/eer.2018.336

  500. Balamurugan R, Sundarrajan S, Ramakrishna S (2011) Recent trends in nanofibrous membranes and their suitability for air and water filtrations. Membranes (Basil) 1(3):232–248

    CrossRef  CAS  Google Scholar 

  501. Ahn YC, Park SK, Kim GT, Hwang YJ, Lee CG, Shin HS (2006) Development of high efficiency nanofilters made of nanofibers. Curr Appl Phys 6:1030–1035

    CrossRef  Google Scholar 

  502. Scholten E, Bromberg L, Rutledge GC, Hatton TA (2011) Electrospun polyurethane fibers for absorption of volatile organic compounds from air. ACS Appl Mater Interface 3:3902

    CrossRef  CAS  Google Scholar 

  503. Graham K, Ouyang M, Raether T, Grafe T, McDonald B, Knauf P (2002) Polymeric nanofibers in air filtration applications. Presented at the fifteenth annual technical conference & expo of the American Filtration & Separations Society, Galveston, Texas, April 9

    Google Scholar 

  504. Jo WK, Kang HJ (2013) Polyacrylonitrile-TiO2 fibers for control of gaseous aromatic compounds. Ind Eng Chem Res 52(12):4475–4483

    CrossRef  CAS  Google Scholar 

  505. Kim HK, Park SJ, Park CS, Le TH, Lee SH, Kim TH, KimJ LCS, Yoon H, Kwon OS (2018) Surface-modified polymer nanofiber membrane for high-efficiency microdust capturing. Chem Eng J 339:204–213

    CrossRef  CAS  Google Scholar 

  506. Zhang R, Liu C, Hsu PC, Zhang C, Liu N, Zhang J, Lee HR, Lu Y, Qiu Y, Chu S, Cui Y (2016) Nanofiber air filters with high-temperature stability for stability for efficient PM 2.5 removal from the pollution sources. Nano Lett 16(6):3642–3649

    CrossRef  CAS  Google Scholar 

  507. Zou W, Gu B, Sun S, Wang S, Li X, Zhao H, Yang P (2019) Preparation of a graphene oxide membrane for airpurification. Mater Res Express 6:105624

    CrossRef  CAS  Google Scholar 

  508. Edwards E, Brantley C, Ruffin PB (2017) Overview of nanotechnology in military and aerospace applications. In: Mensah TO, Wang B, Bothun G, Winter J, Davis V (eds) Nanotechnology commercialization: manufacturing processes and products. Wiley Connections. https://doi.org/10.1002/9781119371762.ch5

  509. Introduction to electrospun fibers for defence technology. http://electrospintech.com/defenceintro

  510. Faccini M, Vaquero C, Amantia D (2012) Development of protective clothing against nanoparticle based on electrospun nanofibers. J Nanomater 2012:892894

    CrossRef  CAS  Google Scholar 

  511. Vitchuli N, Shi Q, Nowak J, McCord M, Bourham M, Zhang X (2010) Electrospun ultrathin nylon fibers for protective applications. J Appl Polym Sci 116(4):2181–2187

    CAS  Google Scholar 

  512. Morozov VN, Mikheev AY (2012) Water-soluble polyvinylpyrrolidone nanofilters manufactured by electrospray-neutralization technique. J Membr Sci 403–404:10–120

    Google Scholar 

  513. White J, Foley M, Rowley A (2015) Novel approach to 3d-printed fabrics and garments. 3D Print Addit Manufac 2(3):145–149

    CrossRef  Google Scholar 

  514. Sundarrajan S, Ramakrishna S (2007) Fabrication of nanocomposite membranes from nanofibers and nanoparticles for protection against chemical warfare stimulant. J Mater Sci 42(20):8400–8407

    CrossRef  CAS  Google Scholar 

  515. Ramaseshan R (2011) Decontamination of chemical warfare simulants using electrospun media. PhD thesis, National University of Singapore

    Google Scholar 

  516. Chen L (2009) Next generation of electrospun textiles for chemical and biological protection and air filtration. PhD thesis, Massachusetts Institute of Technology

    Google Scholar 

  517. Yuan J, Geng J, Xing Z, Shen J, Kang IK, Byun H (2010) Electrospinning of antibacterial poly(vinylidene fluoride) nanofibers containing silver nanoparticles. J Appl Polym Sci 116(2):668–672

    CAS  Google Scholar 

  518. Dhineshbabu NR, Karunakaran G, Suriyaprabha R, Manivasakan P, Rajendran V (2014) Electrospun MgO/nylon 6 hybrid nanofibers for protective clothing. Nano Micro Lett 6:46–54

    CrossRef  Google Scholar 

  519. Haider A, Kwak S, Gupta KC, Kang IK (2015) Antibacterial activity and cytocompatibility of plga/cuo hybrid nanofiber scaffolds prepared by electrospinning. J Nanomater 2015:107

    CrossRef  CAS  Google Scholar 

  520. Kim SJ, Nam YS, Rhee DM, Park HS, Park WH (2007) Preparation and characterization of antimicrobial polycarbonate nanofibrous membrane. Eur Polym J 43(8):3146–3152

    CrossRef  CAS  Google Scholar 

  521. Nabetani H, Iwamoto S (2004) Present state and future potential of membrane technology in food industry. Foods Food Ingredients J Jpn 209(10)

    Google Scholar 

  522. He X, Hwang HM (2016) Nanotechnology in food science: functionality, applicability, and safety assessment. J Food Drug Analysis 24(4):671–681

    CrossRef  CAS  Google Scholar 

  523. Testing programme of manufactured nanomaterials. Organisation for Economic Co-operation and Development; 2007. http://www.oecd.org/chemicalsafety/nanosafety/testing-programme-manufactured-nanomaterials.htm. Accessed 18 July 2016

  524. Peddinti S (2016) Nanotechnology applications in food industry—a review. Res Rev 4(2):2016, e-issn: 2347–7857

    Google Scholar 

  525. Bajpai VK, Kamle M, Shukla S, Mahato DK, Chandra P, Hwang SK, Kumar P, Huh YS, Han YK (2018) Prospects of using nanotechnology for food preservation, safety, and security. J Food Drug Analysis 26(4):1201–1214

    CrossRef  CAS  Google Scholar 

  526. Yu Z, Lib B, Chud J, Zhang P (2018) Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohydr Polym 184:214–220. https://doi.org/10.1016/j.carbpol.2017.12.043. Epub 2017 Dec 20

    CrossRef  CAS  Google Scholar 

  527. Swaroop C, Shukla M (2018) Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications. Int J Biol Macromol 113:729–736

    CrossRef  CAS  Google Scholar 

  528. Foltynowicz Z, Bardenshtein A, Sängerlaub S, Antvorskov H, Kozak W (2010) Nanoscale, zero valent iron particles for application as oxygen scavenger. Food Packag Shelf Life 11:74–83

    CrossRef  Google Scholar 

  529. Sarwar MS, Niazi MBK, Jahan Z, Ahmad T, Hussain A (2018) Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr Polym 184:453–464

    CrossRef  CAS  Google Scholar 

  530. Ahmed J, Mulla M, Arfat YA, Bher A, Jacob H, Auras R (2018) Compression molded LLDPE films loaded with bimetallic (Ag-Cu) nanoparticles and cinnamon essential oil for chicken meat packaging applications. LWT 91:329–333

    CrossRef  CAS  Google Scholar 

  531. Srinivas PR, Philbert M, Vu TQ, Huang Q, Kokini JL, Saos E, Chen H, Peterson CM, Friedl KE, McDade-Ngutter C, Hubbard V, Starke-Reed P, Miller N, Betz J, Dwyerj MJ, Ross SA (2010) Nanotechnology research: applications in nutritional sciences. J Nutr 140:119–124

    CrossRef  CAS  Google Scholar 

  532. Smolkova B, El Yamani N, Collins AR, Gutleb AC, Dusinska M (2015) Epigenetic changes induced by nanomaterials and possible impact on health. Food Chem Toxicol 77:64–73

    CrossRef  CAS  Google Scholar 

  533. Metak AM, Nabhani F, Connolly SN (2015) Migration of engineered nanoparticles from packaging into food products. LWT Food Sci Technol 64:781–787

    CrossRef  CAS  Google Scholar 

  534. Addo Ntim S, Thomas TA, Begley TH, Noonan GO (2015) Characterisation and potential migration of silver nanoparticles from commercially available polymeric food contact materials. Food Addit Contam Part A 32:1003–1011

    CrossRef  CAS  Google Scholar 

  535. Chau CF, Wu SH, Yen GC (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280

    CrossRef  CAS  Google Scholar 

  536. Faneer KA, Rohani R, Mohammad AW (2016) Polyethersulfone nanofiltration membrane incorporated with silicon dioxide prepared by phase inversion method for xylitol purification. Polym Polym Composites 24(9):803–808

    CrossRef  Google Scholar 

  537. Nanotechnology and tyres, greening industry and transport. 2014. OECD Publishing, Paris. https://doi.org/10.1787

  538. Nanofiber filters eliminate contaminants (2009) Environmental and agricultural resources. Spinoff 2009:92–93. https://www.nasa.gov/pdf/413408main_Nanofiber.pdf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khulbe, K.C., Matsuura, T. (2021). Membrane Applications. In: Nanotechnology in Membrane Processes. Lecture Notes in Nanoscale Science and Technology, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-64183-2_6

Download citation