Skip to main content

Therapy Management of Children with Congenital Anomalies of the Upper Extremity

  • Chapter
  • First Online:
Congenital Anomalies of the Upper Extremity
  • 520 Accesses

Abstract

This chapter introduces evaluation of and intervention for children with congenital anomalies of the upper extremity (CAUE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lamb DW. Radial club hand. A continuing study of sixty-eight patients with one hundred and seventeen club hands. J Bone Joint Surg Am. 1977;59(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  2. Brooks C. Rehabilitation of radial club hand. Tech Hand Up Extrem Surg. 1998;2(1):78–85.

    Article  CAS  PubMed  Google Scholar 

  3. Lake A. Hand therapy for children with congenital hand differences. Tech Hand Up Extrem Surg. 2010;14(2):78–84.

    Article  PubMed  Google Scholar 

  4. Holtslag I, van Wijk I, Hartog H, van der Molen AM, van der Sluis C. Long-term functional outcome of patients with longitudinal radial deficiency: cross-sectional evaluation of function, activity and participation. Disabil Rehabil. 2013;35(16):1401–7.

    Article  PubMed  Google Scholar 

  5. Carlsson IK, Dahlin LB, Rosberg HE. Congenital thumb anomalies and the consequences for daily life: patients’ long-term experience after corrective surgery. A qualitative study. Disabil Rehabil. 2018;40(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  6. Goodell PB, Bauer AS, Oishi S, Arner M, Laurell T, Taylor SL, et al. Functional assessment of children and adolescents with symbrachydactyly: a unilateral hand malformation. J Bone Joint Surg Am. 2017;99(13):1119–28.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Netscher DT, Staines KG, Hamilton KL. Severe camptodactyly: a systematic surgeon and therapist collaboration. J Hand Ther. 2015;28(2):167–74; quiz 75.

    Article  PubMed  Google Scholar 

  8. de Jong IG, Reinders-Messelink HA, Tates K, Janssen WG, Poelma MJ, van Wijk I, et al. Activity and participation of children and adolescents with unilateral congenital below elbow deficiency: an online focus group study. J Rehabil Med. 2012;44(10):885–92.

    Article  PubMed  Google Scholar 

  9. Bae DS, Canizares MF, Miller PE, Waters PM, Goldfarb CA. Functional impact of congenital hand differences: early results from the Congenital Upper Limb Differences (CoULD) Registry. J Hand Surg Am. 2018;43(4):321–30.

    Article  PubMed  Google Scholar 

  10. Blair WF, Shurr DG, Buckwalter JA. Functional status in ulnar deficiency. J Pediatr Orthop. 1983;3(1):37–40.

    Article  CAS  PubMed  Google Scholar 

  11. Wall LB, Shen T, Roberts S, Goldfarb CA. Parental assessment of status of congenital upper limb differences: analysis of the pediatric outcomes data collection instrument. J Hand Surg Am. 2016;41(3):381–6.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kelley BP, Franzblau LE, Chung KC, Carlozzi N, Waljee JF. Hand function and appearance following reconstruction for congenital hand differences: a qualitative analysis of children and parents. Plast Reconstr Surg. 2016;138(1):73e–81e.

    Article  CAS  PubMed  Google Scholar 

  13. Ardon MS, Janssen WG, Hovius SE, Stam HJ, Selles RW. Low impact of congenital hand differences on health-related quality of life. Arch Phys Med Rehabil. 2012;93(2):351–7.

    Article  PubMed  Google Scholar 

  14. Kotwal PP, Varshney MK, Soral A. Comparison of surgical treatment and nonoperative management for radial longitudinal deficiency. J Hand Surg Eur Vol. 2012;37(2):161–9.

    Article  CAS  PubMed  Google Scholar 

  15. Buffart LM, Roebroeck ME, Janssen WG, Hoekstra A, Selles RW, Hovius SE, et al. Hand function and activity performance of children with longitudinal radial deficiency. J Bone Joint Surg Am. 2008;90(11):2408–15.

    Article  PubMed  Google Scholar 

  16. Ekblom AG, Dahlin LB, Rosberg HE, Wiig M, Werner M, Arner M. Hand function in children with radial longitudinal deficiency. BMC Musculoskelet Disord. 2013;14:116.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ekblom AG, Dahlin LB, Rosberg HE, Wiig M, Werner M, Arner M. Hand function in adults with radial longitudinal deficiency. J Bone Joint Surg Am. 2014;96(14):1178–84.

    Article  PubMed  Google Scholar 

  18. Goering S. Rethinking disability: the social model of disability and chronic disease. Curr Rev Musculoskelet Med. 2015;8(2):134–8.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Anastasiou D, Kauffman JM. The social model of disability: dichotomy between impairment and disability. J Med Philos. 2013;38(4):441–59.

    Article  PubMed  Google Scholar 

  20. Ho E, Clarke H. Functional evaluation in children with congenital upper extremity malformations. Clin Plast Surg. 2005;32(4):471–83, v.

    Article  PubMed  Google Scholar 

  21. Ashworth S. Physical examination of the pediatric upper extremity. In: Absug J, Kozin S, Neiduski R, editors. Pediatric hand therapy. Philadelphia: Elsevier; 2020. p. 25–30.

    Chapter  Google Scholar 

  22. Vauclair F, Aljurayyan A, Abduljabbar FH, Barimani B, Goetti P, Houghton F, et al. The smartphone inclinometer: a new tool to determine elbow range of motion? Eur J Orthop Surg Traumatol. 2018;28(3):415–21.

    Article  PubMed  Google Scholar 

  23. Macionis V. A technique of direct tracing for recording digital range of motion. J Hand Surg Am. 2008;33(4):612–4.

    Article  PubMed  Google Scholar 

  24. Macdermid JC, Fox E, Richards RS, Roth JH. Validity of pulp-to-palm distance as a measure of finger flexion. J Hand Surg Br. 2001;26(5):432–5.

    Article  CAS  PubMed  Google Scholar 

  25. de Kraker M, Selles RW, Schreuders TA, Hovius SE, Stam HJ. The Pollexograph: a new device for palmar abduction measurements of the thumb. J Hand Ther. 2009;22(3):271–6; quiz 7.

    Article  PubMed  Google Scholar 

  26. de Kraker M, Selles RW, Molenaar TM, Schreuders TA, Hovius SE, Stam HJ. Palmar abduction measurements: reliability and introduction of normative data in healthy children. J Hand Surg Am. 2009;34(9):1704–8.

    Article  PubMed  Google Scholar 

  27. Cornett KM, North KN, Rose KJ, Burns J. Muscle weakness in children with neurofibromatosis type 1. Dev Med Child Neurol. 2015;57(8):733–6.

    Article  PubMed  Google Scholar 

  28. Sloan C. Review of the reliability and validity of myometry with children. Phys Occup Ther Pediatr. 2002;22(2):79–93.

    Article  PubMed  Google Scholar 

  29. Lavelle K, Breger Stanton D. Measurement of edema in the hand. In: MacDermid J, editor. Clinical assessment recommendations. 3rd ed. Mount Laurel: American Society of Hand Therapists; 2015. p. 71–80.

    Google Scholar 

  30. Beltramini A, Milojevic K, Pateron D. Pain assessment in newborns, infants, and children. Pediatr Ann. 2017;46(10):e387–e95.

    Article  PubMed  Google Scholar 

  31. Strauch B, Lang A, Ferder M, Keyes-Ford M, Freeman K, Newstein D. The ten test. Plast Reconstr Surg. 1997;99(4):1074–8.

    Article  CAS  PubMed  Google Scholar 

  32. Strauch B, Lang A. The ten test revisited. Plast Reconstr Surg. 2003;112(2):593–4.

    Article  PubMed  Google Scholar 

  33. Iba K, Takayama S, Kawabata H, Horii E, Kazuki K. Assessment of hand function using the functional dexterity test after opponensplasty in young children with Blauth type 2 hypoplastic thumb. J Pediatr Orthop B. 2020;

    Google Scholar 

  34. Soucie JM, Wang C, Forsyth A, Funk S, Denny M, Roach KE, et al. Range of motion measurements: reference values and a database for comparison studies. Haemophilia. 2011;17(3):500–7.

    Article  CAS  PubMed  Google Scholar 

  35. Barad JH, Kim RS, Ebramzadeh E, Silva M. Range of motion of the healthy pediatric elbow: cross-sectional study of a large population. J Pediatr Orthop B. 2013;22(2):117–22.

    Article  PubMed  Google Scholar 

  36. Da Paz SN, Stalder A, Berger S, Ziebarth K. Range of motion of the upper extremity in a healthy pediatric population: introduction to normative data. Eur J Pediatr Surg. 2016;26(5):454–61.

    PubMed  Google Scholar 

  37. Hager-Ross C, Rosblad B. Norms for grip strength in children aged 4-16 years. Acta Paediatr. 2002;91(6):617–25.

    Article  CAS  PubMed  Google Scholar 

  38. Kocher MH, Oba Y, Kimura IF, Stickley CD, Morgan CF, Hetzler RK. Allometric grip strength norms for American children. J Strength Cond Res. 2019;33(8):2251–61.

    Article  PubMed  Google Scholar 

  39. Bowman OJ, Katz B. Hand strength and prone extension in right-dominant, 6 to 9 year olds. Am J Occup Ther. 1984;38(6):367–76.

    Article  CAS  PubMed  Google Scholar 

  40. Fullwood D. Australian norms for hand and finger strength of boys and girls aged 5-12 years. Aust Occup Ther J. 1986;33(1):26–37.

    Article  Google Scholar 

  41. De Smet L, Vercammen A. Grip strength in children. J Pediatr Orthop B. 2001;10(4):352–4.

    PubMed  Google Scholar 

  42. Holm I, Fredriksen P, Fosdahl M, Vollestad N. A normative sample of isotonic and isokinetic muscle strength measurements in children 7 to 12 years of age. Acta Paediatr. 2008;97(5):602–7.

    Article  CAS  PubMed  Google Scholar 

  43. Ploegmakers JJ, Hepping AM, Geertzen JH, Bulstra SK, Stevens M. Grip strength is strongly associated with height, weight and gender in childhood: a cross sectional study of 2241 children and adolescents providing reference values. J Physiother. 2013;59(4):255–61.

    Article  PubMed  Google Scholar 

  44. Mathiowetz V, Wiemer DM, Federman SM. Grip and pinch strength: norms for 6- to 19-year-olds. Am J Occup Ther. 1986;40(10):705–11.

    Article  CAS  PubMed  Google Scholar 

  45. Ager CL, Olivett BL, Johnson CL. Grasp and pinch strength in children 5 to 12 years old. Am J Occup Ther. 1984;38(2):107–13.

    Article  CAS  PubMed  Google Scholar 

  46. Lee-Valkov PM, Aaron DH, Eladoumikdachi F, Thornby J, Netscher DT. Measuring normal hand dexterity values in normal 3-, 4-, and 5-year-old children and their relationship with grip and pinch strength. J Hand Ther. 2003;16(1):22–8.

    Article  PubMed  Google Scholar 

  47. De Smet L, Decramer A. Key pinch force in children. J Pediatr Orthop B. 2006;15(6):426–7.

    Article  PubMed  Google Scholar 

  48. Surrey LR, Hodson J, Robinson E, Schmidt S, Schulhof J, Stoll L, et al. Pinch strength norms for 5-to 12-year-olds. Phys Occup Ther Pediatr. 2001;21(1):37–49.

    Article  CAS  PubMed  Google Scholar 

  49. Cope EB, Antony JH. Normal values for the two-point discrimination test. Pediatr Neurol. 1992;8(4):251–4.

    Article  CAS  PubMed  Google Scholar 

  50. Hermann RP, Novak CB, Mackinnon SE. Establishing normal values of moving two-point discrimination in children and adolescents. Dev Med Child Neurol. 1996;38(3):255–61.

    Article  CAS  PubMed  Google Scholar 

  51. Dua K, Lancaster TP, Abzug JM. Age-dependent reliability of Semmes-Weinstein and 2-point discrimination tests in children. J Pediatr Orthop. 2019;39(2):98–103.

    Article  PubMed  Google Scholar 

  52. Mathiowetz V, Federman S, Wiemer D. Box and block test of manual dexterity: norms for 6–19 year olds. Can J Occup Ther. 1985;52(5):241.

    Article  Google Scholar 

  53. Jongbloed-Pereboom M, Nijhuis-van der Sanden MW, Steenbergen B. Norm scores of the box and block test for children ages 3-10 years. Am J Occup Ther. 2013;67(3):312–8.

    Article  PubMed  Google Scholar 

  54. Gogola GR, Velleman PF, Xu S, Morse AM, Lacy B, Aaron D. Hand dexterity in children: administration and normative values of the functional dexterity test. J Hand Surg Am. 2013;38(12):2426–31.

    Article  PubMed  Google Scholar 

  55. Smith YA, Hong E, Presson C. Normative and validation studies of the Nine-hole Peg Test with children. Percept Mot Skills. 2000;90(3 Pt 1):823–43.

    Article  CAS  PubMed  Google Scholar 

  56. Poole JL, Burtner PA, Torres TA, McMullen CK, Markham A, Marcum ML, et al. Measuring dexterity in children using the Nine-hole Peg Test. J Hand Ther. 2005;18(3):348–51.

    Article  PubMed  Google Scholar 

  57. Wang YC, Bohannon RW, Kapellusch J, Garg A, Gershon RC. Dexterity as measured with the 9-Hole Peg Test (9-HPT) across the age span. J Hand Ther. 2015;28(1):53–9; quiz 60.

    Article  PubMed  Google Scholar 

  58. Wilson BC, Iacoviello JM, Wilson JJ, Risucci D. Purdue Pegboard performance of normal preschool children. J Clin Neuropsychol. 1982;4(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  59. Skerik SK, Weiss MW, Flatt AE. Functional evaluation of congenital hand anomalies. Am J Occup Ther. 1971;25(2):98–104.

    CAS  PubMed  Google Scholar 

  60. Ho E, Clarke H. Upper extremity function in children with congenital hand anomalies. J Hand Ther. 2005;18:352–64.

    Article  PubMed  Google Scholar 

  61. Buffart LM, Roebroeck ME, Pesch-Batenburg JM, Janssen WG, Stam HJ. Assessment of arm/hand functioning in children with a congenital transverse or longitudinal reduction deficiency of the upper limb. Disabil Rehabil. 2006;28(2):85–95.

    Article  PubMed  Google Scholar 

  62. Buffart LM, Roebroeck ME, Janssen WG, Hoekstra A, Hovius SE, Stam HJ. Comparison of instruments to assess hand function in children with radius deficiencies. J Hand Surg Am. 2007;32(4):531–40.

    Article  PubMed  Google Scholar 

  63. Percival NJ, Sykes PJ, Chandraprakasam T. A method of assessment of pollicisation. J Hand Surg Br. 1991;16(2):141–3.

    Article  CAS  PubMed  Google Scholar 

  64. Kollitz KM, Tomhave WA, Van Heest AE, Moran SL. A new, direct measure of thumb use in children after index pollicization for congenital thumb hypoplasia. J Hand Surg Am. 2018;43(11):978–86.e1.

    Article  PubMed  Google Scholar 

  65. Zlotolow DA, Tosti R, Ashworth S, Kozin SH, Abzug JM. Developing a pollicization outcomes measure. J Hand Surg Am. 2014;39(9):1784–91.

    Article  PubMed  Google Scholar 

  66. Arnould C, Penta M, Renders A, Thonnard JL. ABILHAND-Kids: a measure of manual ability in children with cerebral palsy. Neurology. 2004;63(6):1045–52.

    Article  PubMed  Google Scholar 

  67. Krumlinde-Sundholm L, Holmefur M, Kottorp A, Eliasson AC. The Assisting Hand Assessment: current evidence of validity, reliability, and responsiveness to change. Dev Med Child Neurol. 2007;49(4):259–64.

    Article  PubMed  Google Scholar 

  68. Holmefur M, Krumlinde-Sundholm L, Eliasson AC. Interrater and intrarater reliability of the Assisting Hand Assessment. Am J Occup Ther. 2007;61(1):79–84.

    Article  PubMed  Google Scholar 

  69. Holmefur M, Aarts P, Hoare B, Krumlinde-Sundholm L. Test-retest and alternate forms reliability of the assisting hand assessment. J Rehabil Med. 2009;41(11):886–91.

    Article  PubMed  Google Scholar 

  70. Louwers A, Krumlinde-Sundholm L, Boeschoten K, Beelen A. Reliability of the Assisting Hand Assessment in adolescents. Dev Med Child Neurol. 2017;59(9):926–32.

    Article  PubMed  Google Scholar 

  71. Young NL, Williams JI, Yoshida KK, Wright JG. Measurement properties of the activities scale for kids. J Clin Epidemiol. 2000;53(2):125–37.

    Article  CAS  PubMed  Google Scholar 

  72. Pruitt SD, Varni JW, Setoguchi Y. Functional status in children with limb deficiency: development and initial validation of an outcome measure. Arch Phys Med Rehabil. 1996;77(12):1233–8.

    Article  CAS  PubMed  Google Scholar 

  73. Skold A, Hermansson LN, Krumlinde-Sundholm L, Eliasson AC. Development and evidence of validity for the Children’s Hand-use Experience Questionnaire (CHEQ). Dev Med Child Neurol. 2011;53(5):436–42.

    Article  PubMed  Google Scholar 

  74. Amer A, Eliasson AC, Peny-Dahlstrand M, Hermansson L. Validity and test-retest reliability of Children’s Hand-use Experience Questionnaire in children with unilateral cerebral palsy. Dev Med Child Neurol. 2016;58(7):743–9.

    Article  PubMed  Google Scholar 

  75. Varni JW, Seid M, Kurtin PS. PedsQL 4.0: reliability and validity of the Pediatric Quality of Life Inventory version 4.0 generic core scales in healthy and patient populations. Med Care. 2001;39(8):800–12.

    Article  CAS  PubMed  Google Scholar 

  76. Schlenz AM, Schatz J, McClellan CB, Roberts CW. Responsiveness of the PedsQL to pain-related changes in health-related quality of life in pediatric sickle cell disease. J Pediatr Psychol. 2012;37(7):798–807.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Haley S, Coster W, Faas R. A content validity study of the Pediatric Evaluation of Disability Inventory. Pediatr Phys Ther. 1991;3:177–84.

    Article  Google Scholar 

  78. Feldman AB, Haley SM, Coryell J. Concurrent and construct validity of the Pediatric Evaluation of Disability Inventory. Phys Ther. 1990;70(10):602–10.

    Article  CAS  PubMed  Google Scholar 

  79. Wright F, Boschen K. The Pediatric Evaluation of Disability Inventory (PEDI): validation of a new functional assessment outcome instrument. C J Rehab. 1993;7:41–2.

    Google Scholar 

  80. Nichols D, Case-Smith J. Reliability and validity of the Pediatric Evaluation of Disability Inventory. Pediatr Phys Ther. 1996;8:41–2.

    Article  Google Scholar 

  81. Daltroy LH, Liang MH, Fossel AH, Goldberg MJ. The POSNA pediatric musculoskeletal functional health questionnaire: report on reliability, validity, and sensitivity to change. Pediatric Outcomes Instrument Development Group. Pediatric Orthopaedic Society of North America. J Pediatr Orthop. 1998;18(5):561–71.

    Article  CAS  PubMed  Google Scholar 

  82. Pencharz J, Young NL, Owen JL, Wright JG. Comparison of three outcomes instruments in children. J Pediatr Orthop. 2001;21(4):425–32.

    Article  CAS  PubMed  Google Scholar 

  83. Amor CJ, Spaeth MC, Chafey DH, Gogola GR. Use of the Pediatric Outcomes Data Collection Instrument to evaluate functional outcomes in arthrogryposis. J Pediatr Orthop. 2011;31(3):293–6.

    Article  PubMed  Google Scholar 

  84. Haynes RJ, Sullivan E. The Paediatric Orthopaedic Society of North America Paediatric Orthopaedic Functional Health Questionnaire: an analysis of normal. J Pediatr Orthop. 2001;21(5):619–21.

    Article  CAS  PubMed  Google Scholar 

  85. Wright FV, Hubbard S, Jutai J, Naumann S. The Prosthetic Upper Extremity Functional Index: development and reliability testing of a new functional status questionnaire for children who use upper extremity prostheses. J Hand Ther. 2001;14(2):91–104.

    Article  CAS  PubMed  Google Scholar 

  86. Bagley AM, Molitor F, Wagner LV, Tomhave W, James MA. The Unilateral Below Elbow Test: a function test for children with unilateral congenital below elbow deficiency. Dev Med Child Neurol. 2006;48(7):569–75.

    Article  PubMed  Google Scholar 

  87. Kaplan JD, Jones NF. Outcome measures of microsurgical toe transfers for reconstruction of congenital and traumatic hand anomalies. J Pediatr Orthop. 2014;34(3):362–8.

    Article  PubMed  Google Scholar 

  88. Netscher DT, Aliu O, Sandvall BK, Staines KG, Hamilton KL, Salazar-Reyes H, et al. Functional outcomes of children with index pollicizations for thumb deficiency. J Hand Surg Am. 2013;38(2):250–7.

    Article  PubMed  Google Scholar 

  89. Ardon MS, Selles RW, Roebroeck ME, Hovius SE, Stam HJ, Janssen WG. Poor agreement on health-related quality of life between children with congenital hand differences and their parents. Arch Phys Med Rehabil. 2012;93(4):641–6.

    Article  PubMed  Google Scholar 

  90. Sheffler LC, Hanley C, Bagley A, Molitor F, James MA. Comparison of self-reports and parent proxy-reports of function and quality of life of children with below-the-elbow deficiency. J Bone Joint Surg Am. 2009;91(12):2852–9.

    Article  PubMed  Google Scholar 

  91. Koskimies E, Lindfors N, Gissler M, Peltonen J, Nietosvaara Y. Congenital upper limb deficiencies and associated malformations in Finland: a population-based study. J Hand Surg Am. 2011;36(6):1058–65.

    Article  PubMed  Google Scholar 

  92. Ekblom AG, Laurell T, Arner M. Epidemiology of congenital upper limb anomalies in 562 children born in 1997 to 2007: a total population study from Stockholm, Sweden. J Hand Surg Am. 2010;35(11):1742–54.

    Article  PubMed  Google Scholar 

  93. Froster-Iskenius UG, Baird PA. Limb reduction defects in over one million consecutive livebirths. Teratology. 1989;39(2):127–35.

    Article  CAS  PubMed  Google Scholar 

  94. Evans JA, Vitez M, Czeizel A. Congenital abnormalities associated with limb deficiency defects: a population study based on cases from the Hungarian Congenital Malformation Registry (1975-1984). Am J Med Genet. 1994;49(1):52–66.

    Article  CAS  PubMed  Google Scholar 

  95. Baker RP, Field J, Gozzard C, Wyatt MC, Robertson Y. Does postoperative hand elevation reduce swelling? A randomized study. J Hand Surg Eur Vol. 2010;35(3):192–4.

    Article  CAS  PubMed  Google Scholar 

  96. Fagan DJ, Evans A, Ghandour A, Prabhkaran P, Clay NR. A controlled clinical trial of postoperative hand elevation at home following day-case surgery. J Hand Surg Br. 2004;29(5):458–60.

    Article  CAS  PubMed  Google Scholar 

  97. Enos L, Lane R, MacDougal BA. Brief or new: the use of self-adherent wrap in hand rehabilitation. Am J Occup Ther. 1984;38(4):265–6.

    Article  CAS  PubMed  Google Scholar 

  98. Lowell M, Pirc P, Ward RS, Lundy C, Wilhelm DA, Reddy R, et al. Effect of 3M Coban Self-Adherent Wraps on edema and function of the burned hand: a case study. J Burn Care Rehabil. 2003;24(4):253–8; discussion 2.

    Article  CAS  PubMed  Google Scholar 

  99. Miller LK, Jerosch-Herold C, Shepstone L. Effectiveness of edema management techniques for subacute hand edema: a systematic review. J Hand Ther. 2017;30(4):432–46.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Widgerow AD, Chait LA, Stals PJ, Stals R, Candy G. Multimodality scar management program. Aesthetic Plast Surg. 2009;33(4):533–43.

    Article  PubMed  Google Scholar 

  101. Foo CW, Tristani-Firouzi P. Topical modalities for treatment and prevention of postsurgical hypertrophic scars. Facial Plast Surg Clin North Am. 2011;19(3):551–7.

    Article  PubMed  Google Scholar 

  102. Shin DH, Bohn DK, Agel J, Lindstrom KA, Cronquist SM, Van Heest AE. Hand function with touch screen technology in children with normal hand formation, congenital differences, and neuromuscular disease. J Hand Surg Am. 2015;40(5):922–7. e1

    Article  PubMed  Google Scholar 

  103. Khansa I, Harrison B, Janis JE. Evidence-based scar management: how to improve results with technique and technology. Plast Reconstr Surg. 2016;138(3 Suppl):165S–78S.

    Article  CAS  PubMed  Google Scholar 

  104. Chang LW, Deng WP, Yeong EK, Wu CY, Yeh SW. Pressure effects on the growth of human scar fibroblasts. J Burn Care Res. 2008;29(5):835–41.

    Article  PubMed  Google Scholar 

  105. Costa AM, Peyrol S, Porto LC, Comparin JP, Foyatier JL, Desmouliere A. Mechanical forces induce scar remodeling. Study in non-pressure-treated versus pressure-treated hypertrophic scars. Am J Pathol. 1999;155(5):1671–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Anzarut A, Olson J, Singh P, Rowe BH, Tredget EE. The effectiveness of pressure garment therapy for the prevention of abnormal scarring after burn injury: a meta-analysis. J Plast Reconstr Aesthet Surg. 2009;62(1):77–84.

    Article  PubMed  Google Scholar 

  107. Steinstraesser L, Flak E, Witte B, Ring A, Tilkorn D, Hauser J, et al. Pressure garment therapy alone and in combination with silicone for the prevention of hypertrophic scarring: randomized controlled trial with intraindividual comparison. Plast Reconstr Surg. 2011;128(4):306e–13e.

    Article  CAS  PubMed  Google Scholar 

  108. Engrav LH, Heimbach DM, Rivara FP, Moore ML, Wang J, Carrougher GJ, et al. 12-Year within-wound study of the effectiveness of custom pressure garment therapy. Burns. 2010;36(7):975–83.

    Article  CAS  PubMed  Google Scholar 

  109. Sharp PA, Pan B, Yakuboff KP, Rothchild D. Development of a best evidence statement for the use of pressure therapy for management of hypertrophic scarring. J Burn Care Res. 2016;37(4):255–64.

    Article  PubMed  Google Scholar 

  110. Wiseman J, Ware RS, Simons M, McPhail S, Kimble R, Dotta A, et al. Effectiveness of topical silicone gel and pressure garment therapy for burn scar prevention and management in children: a randomized controlled trial. Clin Rehabil. 2020;34(1):120–31.

    Article  PubMed  Google Scholar 

  111. Nedelec B, De Oliveira A, Calva V, Couture MA, Poulin C, LaSalle L, et al. Longitudinal evaluation of pressure applied by custom fabricated garments worn by adult burn survivors. J Burn Care Res. 2020;41(2):254–62.

    PubMed  Google Scholar 

  112. Widgerow AD, Chait LA. Scar management practice and science: a comprehensive approach to controlling scar tissue and avoiding hypertrophic scarring. Adv Skin Wound Care. 2011;24(12):555–61.

    Article  PubMed  Google Scholar 

  113. Hart RG, Wolff TW, O'Neill WL Jr. Preventing tourniquet effect when dressing finger wounds in children. Am J Emerg Med. 2004;22(7):594–5.

    Article  PubMed  Google Scholar 

  114. Yelvington M, Brown S, Castro MM, Nick TG. The use of neoprene as a scar management modality. Burns. 2013;39(5):866–75.

    Article  PubMed  Google Scholar 

  115. Sawada Y, Sone K. Hydration and occlusion treatment for hypertrophic scars and keloids. Br J Plast Surg. 1992;45(8):599–603.

    Article  CAS  PubMed  Google Scholar 

  116. de Oliveira GV, Nunes TA, Magna LA, Cintra ML, Kitten GT, Zarpellon S, et al. Silicone versus nonsilicone gel dressings: a controlled trial. Dermatol Surg. 2001;27(8):721–6.

    PubMed  Google Scholar 

  117. O’Brien L, Pandit A. Silicone gel sheeting for preventing and treating hypertrophic and keloid scars. Cochrane Database Syst Rev. 2006;(1):CD003826.

    Google Scholar 

  118. O’Brien L, Jones DJ. Silicone gel sheeting for preventing and treating hypertrophic and keloid scars. Cochrane Database Syst Rev. 2013;(9):CD003826.

    Google Scholar 

  119. Wang F, Li X, Wang X, Jiang X. Efficacy of topical silicone gel in scar management: a systematic review and meta-analysis of randomised controlled trials. Int Wound J. 2020;17(3):765–73.

    Google Scholar 

  120. Widgerow AD. Cellular/extracellular matrix cross-talk in scar evolution and control. Wound Repair Regen. 2011;19(2):117–33.

    Article  PubMed  Google Scholar 

  121. Rustad KC, Wong VW, Gurtner GC. The role of focal adhesion complexes in fibroblast mechanotransduction during scar formation. Differentiation. 2013;86(3):87–91.

    Article  CAS  PubMed  Google Scholar 

  122. Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang EI, Loh SA, et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J. 2007;21(12):3250–61.

    Article  CAS  PubMed  Google Scholar 

  123. Chiquet M, Gelman L, Lutz R, Maier S. From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim Biophys Acta. 2009;1793(5):911–20.

    Article  CAS  PubMed  Google Scholar 

  124. Atkinson JA, McKenna KT, Barnett AG, McGrath DJ, Rudd M. A randomized, controlled trial to determine the efficacy of paper tape in preventing hypertrophic scar formation in surgical incisions that traverse Langer’s skin tension lines. Plast Reconstr Surg. 2005;116(6):1648–56; discussion 57–8.

    Article  CAS  PubMed  Google Scholar 

  125. Michlovitz SL, Harris BA, Watkins MP. Therapy interventions for improving joint range of motion: a systematic review. J Hand Ther. 2004;17(2):118–31.

    Article  PubMed  Google Scholar 

  126. Glasgow C, Tooth LR, Fleming J. Mobilizing the stiff hand: combining theory and evidence to improve clinical outcomes. J Hand Ther. 2010;23(4):392–400. quiz 1

    Article  PubMed  Google Scholar 

  127. Flowers KR. A proposed decision hierarchy for splinting the stiff joint, with an emphasis on force application parameters. J Hand Ther. 2002;15(2):158–62.

    Article  PubMed  Google Scholar 

  128. Weeks P, Wray R. Management of acute hand injuries. 2nd ed. St. Louis: Mosby; 1978.

    Google Scholar 

  129. Flowers KR, LaStayo P. Effect of total end range time on improving passive range of motion. J Hand Ther. 1994;7(3):150–7.

    Article  CAS  PubMed  Google Scholar 

  130. Glasgow C, Wilton J, Tooth L. Optimal daily total end range time for contracture: resolution in hand splinting. J Hand Ther. 2003;16(3):207–18.

    Article  PubMed  Google Scholar 

  131. Glasgow C, Fleming J, Tooth LR, Peters S. Randomized controlled trial of daily total end range time (TERT) for Capener splinting of the stiff proximal interphalangeal joint. Am J Occup Ther. 2012;66(2):243–8.

    Article  PubMed  Google Scholar 

  132. Valdes K, Boyd JD, Povlak SB, Szelwach MA. Efficacy of orthotic devices for increased active proximal interphalangeal extension joint range of motion: a systematic review. J Hand Ther. 2019;32(2):184–93.

    Article  PubMed  Google Scholar 

  133. Bickham RS, Waljee JF, Chung KC, Adkinson JM. Postoperative patient- and parent-reported outcomes for children with congenital hand differences: a systematic review. Plast Reconstr Surg. 2017;139(6):1422–9.

    Article  CAS  PubMed  Google Scholar 

  134. Ty JM, James MA. Failure of differentiation: part II (arthrogryposis, camptodactyly, clinodactyly, madelung deformity, trigger finger, and trigger thumb). Hand Clin. 2009;25(2):195–213.

    Article  PubMed  Google Scholar 

  135. Rhee SH, Oh WS, Lee HJ, Roh YH, Lee JO, Baek GH. Effect of passive stretching on simple camptodactyly in children younger than three years of age. J Hand Surg Am. 2010;35(11):1768–73.

    Article  PubMed  Google Scholar 

  136. Hori M, Nakamura R, Inoue G, Imamura T, Horii E, Tanaka Y, et al. Nonoperative treatment of camptodactyly. J Hand Surg Am. 1987;12(6):1061–5.

    Article  CAS  PubMed  Google Scholar 

  137. Miura T, Nakamura R, Tamura Y. Long-standing extended dynamic splintage and release of an abnormal restraining structure in camptodactyly. J Hand Surg Br. 1992;17(6):665–72.

    Article  CAS  PubMed  Google Scholar 

  138. Benson LS, Waters PM, Kamil NI, Simmons BP, Upton J 3rd. Camptodactyly: classification and results of nonoperative treatment. J Pediatr Orthop. 1994;14(6):814–9.

    Article  CAS  PubMed  Google Scholar 

  139. Wang AMQ, Kim M, Ho ES, Davidge KM. Surgery and conservative management of camptodactyly in pediatric patients: a systematic review. Hand. 2019;15(6):761–70.

    Google Scholar 

  140. Wall LB, Ezaki M, Goldfarb CA. Camptodactyly treatment for the lesser digits. J Hand Surg Am. 2018;43(9):874.e1–4.

    Article  Google Scholar 

  141. Singh V, Haq A, Priyadarshini P, Kumar P. Camptodactyly: an unsolved area of plastic surgery. Arch Plast Surg. 2018;45(4):363–6.

    Article  PubMed  PubMed Central  Google Scholar 

  142. de Roode CP, James MA, McCarroll HR Jr. Abductor digit minimi opponensplasty: technique, modifications, and measurement of opposition. Tech Hand Up Extrem Surg. 2010;14(1):51–3.

    Article  PubMed  Google Scholar 

  143. Goldfarb C, Calhoun V, Daily L, Manske P. Hand and upper extremity therapy: congenital, pediatric, adolescent. St Louis protocols. St. Louis Shriner’s Hospital for Children; 2011.

    Google Scholar 

  144. Egerszegi EP. Reconstruction of congenital hand anomalies to provide stable pinch and/or grasp: case pictorial series. J Pediatr Rehabil Med. 2009;2(3):173–9.

    Article  PubMed  Google Scholar 

  145. Kozin SH. Pollicization: the concept, technical details, and outcome. Clin Orthop Surg. 2012;4(1):18–35.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Roper BA, Turnbull TJ. Functional assessment after pollicisation. J Hand Surg Br. 1986;11(3):399–403.

    Article  CAS  PubMed  Google Scholar 

  147. Kozin SH, Ezaki M. Flexor digitorum superficialis opponensplasty with ulnar collateral ligament reconstruction for thumb deficiency. Tech Hand Up Extrem Surg. 2010;14(1):46–50.

    Article  PubMed  Google Scholar 

  148. Manske PR, Goldfarb CA. Congenital failure of formation of the upper limb. Hand Clin. 2009;25(2):157–70.

    Article  PubMed  Google Scholar 

  149. Bednar MS, James MA, Light TR. Congenital longitudinal deficiency. J Hand Surg Am. 2009;34(9):1739–47.

    Article  PubMed  Google Scholar 

  150. Damore E, Kozin SH, Thoder JJ, Porter S. The recurrence of deformity after surgical centralization for radial clubhand. J Hand Surg Am. 2000;25(4):745–51.

    Article  CAS  PubMed  Google Scholar 

  151. Banskota AK, Bijukachhe B, Rajbhandary T, Pradhan I, Singh A. Radial club hand deformity – the continuing challenges and controversies. Kathmandu Univ Med J (KUMJ). 2005;3(1):30–4.

    CAS  Google Scholar 

  152. Fuller M. Treatment of congenital differences of the upper extremity: Therapist’s commentary. J Hand Ther. 1999;12(2):174–7.

    Article  CAS  PubMed  Google Scholar 

  153. Butts DE, Goldberg MJ. Congenital absence of the radius: the occupational therapist and a new orthosis. Am J Occup Ther. 1977;31(2):95–100.

    CAS  PubMed  Google Scholar 

  154. VanHeest A. Wrist centralization using the dorsal rotation flap in radial longitudinal deficiency. Tech Hand Up Extrem Surg. 2010;14(2):94–9.

    Article  PubMed  Google Scholar 

  155. Wall LB, Ezaki M, Oishi SN. Management of congenital radial longitudinal deficiency: controversies and current concepts. Plast Reconstr Surg. 2013;132(1):122–8.

    Article  CAS  PubMed  Google Scholar 

  156. Kennedy SM. Neoprene wrist brace for correction of radial club hand in children. J Hand Ther. 1996;9(4):387–90.

    Article  CAS  PubMed  Google Scholar 

  157. Muzaffar AR, Rafols F, Masson J, Ezaki M, Carter PR. Keloid formation after syndactyly reconstruction: associated conditions, prevalence, and preliminary report of a treatment method. J Hand Surg Am. 2004;29(2):201–8.

    Article  PubMed  Google Scholar 

  158. Deunk J, Nicolai JP, Hamburg SM. Long-term results of syndactyly correction: full-thickness versus split-thickness skin grafts. J Hand Surg Br. 2003;28(2):125–30.

    Article  CAS  PubMed  Google Scholar 

  159. Lumenta DB, Kitzinger HB, Beck H, Frey M. Long-term outcomes of web creep, scar quality, and function after simple syndactyly surgical treatment. J Hand Surg Am. 2010;35(8):1323–9.

    Article  PubMed  Google Scholar 

  160. Vekris MD, Lykissas MG, Soucacos PN, Korompilias AV, Beris AE. Congenital syndactyly: outcome of surgical treatment in 131 webs. Tech Hand Up Extrem Surg. 2010;14(1):2–7.

    Article  PubMed  Google Scholar 

  161. Mallet C, Ilharreborde B, Jehanno P, Litzelmann E, Valenti P, Mazda K, et al. Comparative study of 2 commissural dorsal flap techniques for the treatment of congenital syndactyly. J Pediatr Orthop. 2013;33(2):197–204.

    Article  PubMed  Google Scholar 

  162. Goldfarb CA, Steffen JA, Stutz CM. Complex syndactyly: aesthetic and objective outcomes. J Hand Surg Am. 2012;37(10):2068–73.

    Article  PubMed  Google Scholar 

  163. Pehnke M, Schmieg S, Shah A. Congenital-syndactyly. In: Abzug J, Kozin S, Neiduski R, editors. Pediatric hand therapy. Philadelphia: Elsevier; 2020. p. 93–107.

    Chapter  Google Scholar 

  164. Moran S, Tomhave W. Management of congenital hand anomalies. In: Skirven T, O’sterman A, Fedorzyk J, Amadio P, editors. Rehabilitation of the hand and upper extremity. 6th ed. Philadelphia: Elsevier Mosby; 2011. p. 1631–50.

    Chapter  Google Scholar 

  165. Baek GH, Lee HJ. The natural history of pediatric trigger thumb: a study with a minimum of five years follow-up. Clin Orthop Surg. 2011;3(2):157–9.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Farr S, Grill F, Ganger R, Girsch W. Open surgery versus nonoperative treatments for paediatric trigger thumb: a systematic review. J Hand Surg Eur Vol. 2014;39(7):719–26.

    Article  CAS  PubMed  Google Scholar 

  167. Marek DJ, Fitoussi F, Bohn DC, Van Heest AE. Surgical release of the pediatric trigger thumb. J Hand Surg Am. 2011;36(4):647–52.e2.

    Article  PubMed  Google Scholar 

  168. Watanabe H, Hamada Y, Toshima T, Nagasawa K. Conservative treatment for trigger thumb in children. Arch Orthop Trauma Surg. 2001;121(7):388–90.

    Article  CAS  PubMed  Google Scholar 

  169. Jung HJ, Lee JS, Song KS, Yang JJ. Conservative treatment of pediatric trigger thumb: follow-up for over 4 years. J Hand Surg Eur Vol. 2012;37(3):220–4.

    Article  CAS  PubMed  Google Scholar 

  170. Forlin E, Kaetsu EY, de Vasconcelos JE. Success of conservative treatment of trigger thumb in children after minimum follow-up of five years. Rev Bras Ortop. 2012;47(4):483–7.

    Article  PubMed  Google Scholar 

  171. Koh S, Horii E, Hattori T, Hiroishi M, Otsuka J. Pediatric trigger thumb with locked interphalangeal joint: can observation or splinting be a treatment option? J Pediatr Orthop. 2012;32(7):724–6.

    Article  PubMed  Google Scholar 

  172. Lee ZL, Chang CH, Yang WY, Hung SS, Shih CH. Extension splint for trigger thumb in children. J Pediatr Orthop. 2006;26(6):785–7.

    Article  PubMed  Google Scholar 

  173. Nemoto K, Nemoto T, Terada N, Amako M, Kawaguchi M. Splint therapy for trigger thumb and finger in children. J Hand Surg Br. 1996;21(3):416–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ginny Gibson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gibson, G. (2021). Therapy Management of Children with Congenital Anomalies of the Upper Extremity. In: Laub Jr., D.R. (eds) Congenital Anomalies of the Upper Extremity. Springer, Cham. https://doi.org/10.1007/978-3-030-64159-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64159-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64158-0

  • Online ISBN: 978-3-030-64159-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics