Skip to main content

Battery Management for Automated Warehouses via Deep Reinforcement Learning

Part of the Lecture Notes in Computer Science book series (LNAI,volume 12547)

Abstract

Automated warehouses are widely deployed in large-scale distribution centers due to their ability of reducing operational cost and improving throughput capacity. In an automated warehouse, orders are fulfilled by battery-powered AGVs transporting movable shelves or boxes. Therefore, battery management is crucial to the productivity since recovering depleted batteries can be time-consuming and seriously affect the overall performance of the system by reducing the number of available robots. In this paper, we propose to solve the battery management problem by using deep reinforcement learning (DRL). We first formulate the battery management problem as a Markov Decision Process (MDP). Then we show the state-of-the-art DRL method which uses Gaussian noise to enforce exploration could perform poorly in the formulated MDP, and present a novel algorithm called TD3-ARL that performs effective exploration by regulating the magnitude of the outputted action. Finally, extensive empirical evaluations confirm the superiority of our algorithm over the state-of-the-art and the rule-based policies.

Keywords

  • Automated warehouses
  • Battery management
  • Deep reinforcement learning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-64096-5_9
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-64096-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Chou, P.W., Maturana, D., Scherer, S.: Improving stochastic policy gradients in continuous control with deep reinforcement learning using the beta distribution. In: ICML, pp. 834–843 (2017)

    Google Scholar 

  2. Coulom, R.: Efficient selectivity and backup operators in Monte-Carlo tree search. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75538-8_7

    CrossRef  Google Scholar 

  3. Ebben, M.: Logistic control in automated transportation networks. Ph.D. thesis, University of Twente (2001)

    Google Scholar 

  4. Enright, J.J., Wurman, P.R.: Optimization and coordinated autonomy in mobile fulfillment systems. In: Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelligence (2011)

    Google Scholar 

  5. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G., Pineau, J.: An introduction to deep reinforcement learning. Found. Trends Mach. Learn. 11(3–4), 219–354 (2018)

    CrossRef  Google Scholar 

  6. Fujimoto, S., Hoof, H., Meger, D.: Addressing function approximation error in actor-critic methods. In: ICML, pp. 1582–1591 (2018)

    Google Scholar 

  7. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: ICML, pp. 1856–1865 (2018)

    Google Scholar 

  8. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_29

    CrossRef  Google Scholar 

  9. Le-Anh, T., De Koster, M.: A review of design and control of automated guided vehicle systems. Eur. J. Oper. Res. 171(1), 1–23 (2006)

    CrossRef  MathSciNet  Google Scholar 

  10. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. In: ICLR (2016)

    Google Scholar 

  11. McHANEY, R.: Modelling battery constraints in discrete event automated guided vehicle simulations. Int. J. Prod. Res. 33(11), 3023–3040 (1995)

    CrossRef  Google Scholar 

  12. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: ICML, pp. 1928–1937 (2016)

    Google Scholar 

  13. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529 (2015)

    CrossRef  Google Scholar 

  14. OpenAI: Openai five (2018). https://blog.openai.com/openai-five/

  15. Rummery, G.A., Niranjan, M.: On-line Q-learning using connectionist systems. Tech. rep., Cambridge University (1994)

    Google Scholar 

  16. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484 (2016)

    CrossRef  Google Scholar 

  17. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.A.: Deterministic policy gradient algorithms. In: ICML, pp. 387–395 (2014)

    Google Scholar 

  18. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354 (2017)

    CrossRef  Google Scholar 

  19. Sutton, R.S.: Learning to predict by the methods of temporal differences. Mach. Learn. 3, 9–44 (1988)

    Google Scholar 

  20. Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis, King’s College, Cambridge, UK (May 1989)

    Google Scholar 

  21. Zhao, M., Li, Z., An, B., Lu, H., Yang, Y., Chu, C.: Impression allocation for combating fraud in e-commerce via deep reinforcement learning with action norm penalty. In: IJCAI, pp. 3940–3946 (2018)

    Google Scholar 

  22. Zou, B., Xu, X., De Koster, R., et al.: Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system. Eur. J. Oper. Res. 267(2), 733–753 (2018)

    CrossRef  Google Scholar 

Download references

Acknowledgements

This work was supported by Alibaba Group through Alibaba Innovative Research (AIR) Program and Alibaba-NTU Joint Research Institute (JRI), Nanyang Technological University, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanchen Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Deng, Y., An, B., Qiu, Z., Li, L., Wang, Y., Xu, Y. (2020). Battery Management for Automated Warehouses via Deep Reinforcement Learning. In: Taylor, M.E., Yu, Y., Elkind, E., Gao, Y. (eds) Distributed Artificial Intelligence. DAI 2020. Lecture Notes in Computer Science(), vol 12547. Springer, Cham. https://doi.org/10.1007/978-3-030-64096-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64096-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64095-8

  • Online ISBN: 978-3-030-64096-5

  • eBook Packages: Computer ScienceComputer Science (R0)