Skip to main content

Momentum Microscopy

  • Chapter
  • First Online:
Photoelectron Spectroscopy

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 72))

Abstract

In the past decades, photoelectron spectroscopy has evolved as a powerful tool to understand the valence electronic structure and band-dispersion of solid state systems. As discussed in Chaps. 6 and 7, experimental work covers almost all areas of modern solid-state and surface physics. In this chapter we describe a novel way of performing momentum resolved photoemission experiments, based on the the principles of photoelectron microscopy. This approach, known as momentum microscopy (MM), records high resolution images of the distribution of electronic states in reciprocal (i.e., momentum-) space. Such measurements provide a comprehensive and intuitive access to the electronic properties of a material. Momentum microscopy is closely related to the recent invention of imaging (2D) spin filters. By simultaneously measuring several thousands of spin-resolved data points within one momentum image, the efficiency of spin-resolved photoemission experiments experienced a tremendous boost by these developments. The concepts of spin-resolved momentum microscopy are reviewed in this chapter, and several examples of its application to modern solid state physics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The sample is always kept at a fixed angle with respect to the optical axis of the momentum microscope, unlike in conventional ARPES setups where the angle is scanned during the measurement.

  2. 2.

    The angle \(\alpha \) here is the trajectory angle inside the spherical 1/r potential and \(\alpha ^{*}\) is the angle of the electron beam with respect to the optical axis before entering the analyzer. Due to refraction, these two angles are not identical.

  3. 3.

    In a real instrument, additional electron lenses might be used to control the magnification and other beam parameters before the image is projected onto the 2D detector unit.

  4. 4.

    For Mott detectors the spin sensitivity, S, is often also called Sherman function.

  5. 5.

    Note that some scatter of a few tens of meV to 100 meV of the absolute DP energy is usually observed between different samples due to the different concentration of intrinsic doping.

References

  1. F. Hadjarab, J.L. Erskine, Image properties of the hemispherical analyzer applied to multichannel energy detection. J. Electron Spectrosc. Relat. Phenom. 36, 227 (1985)

    Article  Google Scholar 

  2. S. Suga, C. Tusche, Photoelectron spectroscopy in a wide h\(\nu \) region from 6 eV to 8 keV with full momentum and spin resolution. J. Electron Spectrosc. Relat. Phenom. 200, 119–142 (2015)

    Article  Google Scholar 

  3. C. Tusche, A. Krasyuk, J. Kirschner, Spin resolved bandstructure imaging with a high resolution momentum microscope. Ultramicroscopy 159, 520 (2015)

    Article  Google Scholar 

  4. A.A. Ünal, A. Winkelmann, C. Tusche, F. Bisio, M. Ellguth, C.-T. Chiang, J. Henk, J. Kirschner, Polarization dependence and surface sensitivity of linear and nonlinear photoemission from Bi/Cu(111). Phys. Rev. B 86, 125447 (2012)

    Article  ADS  Google Scholar 

  5. A. Winkelmann, A. Akin Ünal, C. Tusche, M. Ellguth, C.-T. Chiang, J. Kirschner, Direct k-space imaging of Mahan cones at clean and Bi-covered Cu(111) surfaces. New J. Phys. 14, 083027 (2012a)

    Google Scholar 

  6. S.V. Chernov, K. Medjanik, C. Tusche, D. Kutnyakhov, S.A. Nepijko, A. Oelsner, J. Braun, J. Minár, S. Borek, H. Ebert, H.J. Elmers, J. Kirschner, G. Schönhense, Anomalous d-like surface resonance on Mo(110) analyzed by time-of-flight momentum microscopy. Ultramicroscopy 159, 453 (2015)

    Article  Google Scholar 

  7. C. Tusche, M. Ellguth, A.A. Ünal, C.-T. Chiang, A. Winkelmann, A. Krasyuk, M. Hahn, G. Schönhense, J. Kirschner, Spin resolved photoelectron microscopy using a two-dimensional spin-polarizing electron mirror. Appl. Phys. Lett. 99, 032505 (2011)

    Article  ADS  Google Scholar 

  8. D. Vasilyev, C. Tusche, F. Giebels, H. Gollisch, R. Feder, J. Kirschner, Low-energy electron reflection from Au-passivated Ir(100) for application in imaging spin-filters. J. Electron Spectrosc. Relat. Phenom. 199, 10 (2015)

    Article  Google Scholar 

  9. A. Oelsner, O. Schmidt, M. Schicketanz, M. Klais, G. Schönhense, V. Mergel, O. Jagutzki, H. Schmidt-Böcking, Microspectroscopy and imaging using a delay line detector in time-of-flight photoemission microscopy. Rev. Sci. Instrum. 72, 3968 (2001)

    Article  ADS  Google Scholar 

  10. R. van Gastel, I. Sikharulidze, S. Schramm, J. Abrahams, B. Poelsema, R. Tromp, S. van der Molen, Medipix 2 detector applied to low energy electron microscopy. Ultramicroscopy 110, 33 (2009)

    Article  Google Scholar 

  11. A. Cavallin, V. Sevriuk, K.N. Fischer, S. Manna, S. Ouazi, M. Ellguth, C. Tusche, H.L. Meyerheim, D. Sander, J. Kirschner, Preparation and characterization of Bi\(_2\)Se\(_3\)(0001) and of epitaxial FeSe nanocrystals on Bi\(_2\)Se\(_3\)(0001). Surf. Sci. 646, 72 (2015)

    Article  ADS  Google Scholar 

  12. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang, Topological insulators in Bi\(_2\)Se\(_3\), Bi\(_2\)Te\(_3\) and Sb\(_2\)Te\(_3\) with a single Dirac cone on the surface. Nat. Phys. 5, 438 (2009)

    Article  Google Scholar 

  13. T. Valla, Z.-H. Pan, D. Gardner, Y.S. Lee, S. Chu, Photoemission spectroscopy of magnetic and nonmagnetic impurities on the surface of the Bi\(_2\)Se\(_3\) topological insulator. Phys. Rev. Lett. 108, 117601 (2012)

    Article  ADS  Google Scholar 

  14. A.A. Ünal, C. Tusche, S. Ouazi, S. Wedekind, C.-T. Chiang, A. Winkelmann, D. Sander, J. Henk, J. Kirschner, Hybridization between the unoccupied shockley surface state and bulk electronic states on Cu(111). Phys. Rev. B 84, 073107 (2011)

    Article  ADS  Google Scholar 

  15. M. Kotsugi, W. Kuch, F. Offi, L.I. Chelaru, J. Kirschner, Microspectroscopic two-dimensional Fermi surface mapping using a photoelectron emission microscope. Rev. Sci. Instrum. 74, 2754 (2003)

    Google Scholar 

  16. B. Krömker, M. Escher, D. Funnemann, D. Hartung, H. Engelhard, J. Kirschner, Development of a momentum microscope for time resolved band structure imaging. Rev. Sci. Instrum. 79, 053702 (2008)

    Article  ADS  Google Scholar 

  17. M. Escher, N. Weber, M. Merkel, C. Ziethen, P. Bernhard, G. Schönhense, S. Schmidt, F. Forster, F. Reinert, B. Krömker, D. Funnemann. Nanoesca: a novel energy filter for imaging x-ray photoemission spectroscopy. J. Phys.: Condens. Matter 17, S1329 (2005)

    Google Scholar 

  18. M.J. Pellin, C.E. Young, D.M. Gruen, Multiphoton ionization followed by time-of-flight mass spectroscopy of sputtered neutrals. Scanning Microsc. 2, 1353 (1988)

    Google Scholar 

  19. W. Poschenrieder, Multiple-focusing time of flight mass spectrometers part I. ToFMS with equal momentum acceleration. Int. J. Mass Spectrom. Ion Phys. 6, 413 (1971)

    Google Scholar 

  20. A. Winkelmann, C. Tusche, A.A. Ünal, M. Ellguth, J. Henk, J. Kirschner, Analysis of the electronic structure of copper via two-dimensional photoelectron momentum distribution patterns. New J. Phys. 14, 043009 (2012b)

    Article  ADS  Google Scholar 

  21. M. Graus, M. Grimm, C. Metzger, M. Dauth, C. Tusche, J. Kirschner, S. Kümmel, A. Schöll, F. Reinert, Electron-vibration coupling in molecular materials: assignment of vibronic modes from photoelectron momentum mapping. Phys. Rev. Lett. 116, 147601 (2016)

    Article  ADS  Google Scholar 

  22. B. Stadtmüller, J. Seidel, N. Haag, L. Grad, C. Tusche, G. van Straaten, M. Franke, J. Kirschner, C. Kumpf, M. Cinchetti, M. Aeschlimann, Modifying the surface of a Rashba-split Pb-Ag alloy using tailored metal-organic bonds. Phys. Rev. Lett. 117, 096805 (2016)

    Google Scholar 

  23. N.A. Cherepkov, G. Schönhense, Linear dichroism in photoemission from oriented molecules. Europhys. Lett. 24, 79 (1993)

    Article  ADS  Google Scholar 

  24. V.N. Strocov, R. Claessen, F. Aryasetiawan, P. Blaha, P.O. Nilsson, Band- and k-dependent self-energy effects in the unoccupied and occupied quasiparticle band structure of Cu. Phys. Rev. B 66, 195104 (2002)

    Article  ADS  Google Scholar 

  25. C. Tusche, M. Ellguth, V. Feyer, A. Krasyuk, C. Wiemann, J. Henk, C.M. Schneider, J. Kirschner, Nonlocal electron correlations in an itinerant ferromagnet. Nat. Commun. 9, 3727 (2018)

    Article  ADS  Google Scholar 

  26. S. Suga, C. Tusche, Y.-I. Matsushita, M. Ellguth, A. Irizawa, J. Kirschner, Momentum microscopy of the layered semiconductor TiS\(_2\) and Ni intercalated Ni\(_{1/3}\)TiS\(_2\). New J. Phys. 17, 083010 (2015)

    Article  ADS  Google Scholar 

  27. C. Wiemann, M. Patt, I.P. Krug, N.B. Weber, M. Escher, M. Merkel, C.M. Schneider, A new nanospectroscopy tool with synchrotron radiation: NanoESCA@Elettra, e-J. Surf. Sci. Nanotechnol. 9, 395 (2011)

    Article  Google Scholar 

  28. S. Roy, H.L. Meyerheim, A. Ernst, K. Mohseni, C. Tusche, M.G. Vergniory, T.V. Menshchikova, M.M. Otrokov, A.G. Ryabishchenkova, Z.S. Aliev, M.B. Babanly, K.A. Kokh, O.E. Tereshchenko, E.V. Chulkov, J. Schneider, J. Kirschner, Tuning the Dirac point position in Bi\(_2\)Se\(_3\)(0001) via surface carbon doping. Phys. Rev. Lett. 113, 116802 (2014a)

    Article  ADS  Google Scholar 

  29. S. Roy, H.L. Meyerheim, K. Mohseni, A. Ernst, M.M. Otrokov, M.G. Vergniory, G. Mussler, J. Kampmeier, D. Grützmacher, C. Tusche, J. Schneider, E.V. Chulkov, J. Kirschner, Atomic relaxations at the (0001) surface of Bi\(_2\)Se\(_3\) single crystals and ultrathin films. Phys. Rev. B 90, 155456 (2014b)

    Article  ADS  Google Scholar 

  30. B. Tonner, Energy-filtered imaging with electrostatic optics for photoelectron microscopy. Nucl. Instrum. Methods Phys. Res., Sect. A 291, 60 (1990)

    Google Scholar 

  31. C. Tusche, Y.-J. Chen, C.M. Schneider, J. Kirschner, Imaging properties of hemispherical electrostatic energy analyzers for high resolution momentum microscopy. Ultramicroscopy 206, 112815 (2019)

    Article  Google Scholar 

  32. C. Tusche, J. Kirschner, Abbildende Energiefiltervorrichtung und Verfahren zu deren Betrieb. German patent, DE102014019408B4 (2017)

    Google Scholar 

  33. A. Baraldi, V. Dhanak, Design study of a double pass hemispherical electron energy analyser with multichannel detection. J. Electron Spectrosc. Relat. Phenom. 67, 211 (1994)

    Article  Google Scholar 

  34. D. Roy, D. Tremblay, Design of electron spectrometers. Rep. Prog. Phys. 53, 1621 (1990)

    Article  ADS  Google Scholar 

  35. P. Louette, A. Delage, D. Roy, P. Thiry, R. Caudano, An interelectrode distance dependent fringing field correction for the hemispherical deflector analyzer. J. Electron Spectrosc. Relat. Phenom. 52, 867 (1990)

    Google Scholar 

  36. O. Sise, T.J.M. Zouros, Position, energy, and transit time distributions in a hemispherical deflector analyzer with position sensitive detector. J. Spectrosc. 2015, 153513 (2015)

    Article  Google Scholar 

  37. J. Henk, A. Ernst, P. Bruno, Spin polarization of the L -gap surface states on Au(111). Phys. Rev. B 68, 165416 (2003)

    Article  ADS  Google Scholar 

  38. A. Winkelmann, M. Ellguth, C. Tusche, A.A. Ünal, J. Henk, J. Kirschner, Momentum-resolved photoelectron interference in crystal surface barrier scattering. Phys. Rev. B 86, 085427 (2012)

    Google Scholar 

  39. A. Zaporozhchenko-Zymaková, D. Kutnyakhov, K. Medjanik, C. Tusche, O. Fedchenko, S. Chernov, M. Ellguth, S.A. Nepijko, H.J. Elmers, G. Schönhense, Momentum-resolved photoelectron absorption in surface barrier scattering on Ir(111) and graphene/Ir(111). Phys. Rev. B 96, 155108 (2017)

    Article  ADS  Google Scholar 

  40. A. Locatelli, E. Bauer, Recent advances in chemical and magnetic imaging of surfaces and interfaces by XPEEM. J. Phys.: Condens. Matter 20, 093002 (2008)

    Google Scholar 

  41. K.R. Knox, A. Locatelli, M.B. Yilmaz, D. Cvetko, T.O. Mentes, M.A. Niño, P. Kim, A. Morgante, R.M. Osgood, Making angle-resolved photoemission measurements on corrugated monolayer crystals: suspended exfoliated single-crystal graphene. Phys. Rev. B 84, 115401 (2011)

    Article  ADS  Google Scholar 

  42. R.M. Tromp, Y. Fujikawa, J.B. Hannon, A.W. Ellis, A. Berghaus, O. Schaff, A simple energy filter for low energy electron microscopy/photoelectron emission microscopy instruments. J. Phys.: Condens. Matter 21, 314007 (2009)

    Google Scholar 

  43. E. Bauer, Low energy electron microscopy. Rep. Prog. Phys. 57, 895 (1994)

    Article  ADS  Google Scholar 

  44. R. Tromp, J. Hannon, W. Wan, A. Berghaus, O. Schaff, A new aberration-corrected, energy-filtered LEEM/PEEM instrument II. Operation and results. Ultramicroscopy 127, 25 (2013)

    Article  Google Scholar 

  45. J. Tesch, F. Paschke, M. Fonin, M. Wietstruk, S. Böttcher, R.J. Koch, A. Bostwick, C. Jozwiak, E. Rotenberg, A. Makarova, B. Paulus, E. Voloshina, Y. Dedkov, The graphene/n-Ge(110) interface: structure, doping, and electronic properties. Nanoscale 10, 6088 (2018)

    Article  Google Scholar 

  46. F. Matsui, S. Makita, H. Matsuda, T. Yano, E. Nakamura, K. Tanaka, S. Suga, S. Kera, Photoelectron momentum microscope at BL6U of UVSOR-III synchrotron. Jpn. J. Appl. Phys. 59, 067001 (2020)

    Article  ADS  Google Scholar 

  47. M.H. Berntsen, O. Götberg, O. Tjernberg, An experimental setup for high resolution 10.5 eV laser-based angle-resolved photoelectron spectroscopy using a time-of-flight electron analyzer. Rev. Sci. Instrum. 82, 095113 (2011)

    Google Scholar 

  48. G. Schönhense, A. Oelsner, O. Schmidt, G. Fecher, V. Mergel, O. Jagutzki, H. Schmidt-Böcking, Time-of-flight photoemission electron microscopy—a new way to chemical surface analysis. Surf. Sci. 480, 180 (2001)

    Article  ADS  Google Scholar 

  49. A. Oelsner, M. Rohmer, C. Schneider, D. Bayer, G. Schönhense, M. Aeschlimann, Time- and energy resolved photoemission electron microscopy-imaging of photoelectron time-of-flight analysis by means of pulsed excitations. J. Electron Spectrosc. Relat. Phenom. 178–179, 317 (2010)

    Article  Google Scholar 

  50. C. Tusche, P. Goslawski, D. Kutnyakhov, M. Ellguth, K. Medjanik, H.J. Elmers, S. Chernov, R. Wallauer, D. Engel, A. Jankowiak, G. Schönhense, Multi-MHz time-of-flight electronic bandstructure imaging of graphene on Ir(111). Appl. Phys. Lett. 108, 261602 (2016)

    Article  ADS  Google Scholar 

  51. A. Oelsner, A. Krasyuk, G. Fecher, C. Schneider, G. Schönhense, Image enhancement in photoemission electron microscopy by means of imaging time-of-flight analysis. J. Electron Spectrosc. Relat. Phenom. 137–140, 757 (2004)

    Article  Google Scholar 

  52. C. Tusche, A. Krasyuk, J. Kirschner, G. Schönhense, Messvorrichtung und Verfahren zur Erfassung einer Impulsverteilung geladener Teilchen. German patent, DE102013005173C5 (2014)

    Google Scholar 

  53. G. Schönhense, H. Elmers, S. Nepijko, C. Schneider, Time-resolved photoemission electron microscopy. Adv. Imaging Electron Phys 142, 159 (2006)

    Article  Google Scholar 

  54. A. Jankowiak, G. Wüstefeld, Low-\(\alpha \) operation of BESSY II and future plans for an alternating bunch length scheme BESSYVSR. Synchrotron Radiation News 26, 22 (2013)

    Article  Google Scholar 

  55. D. Kutnyakhov, R.P. Xian, M. Dendzik, M. Heber, F. Pressacco, S.Y. Agustsson, L. Wenthaus, H. Meyer, S. Gieschen, G. Mercurio, A. Benz, K. Bühlman, S. Däster, R. Gort, D. Curcio, K. Volckaert, M. Bianchi, C. Sanders, J.A. Miwa, S. Ulstrup, A. Oelsner, C. Tusche, Y.-J. Chen et al., Time- and momentum-resolved photoemission studies using time-of-flight momentum microscopy at a free-electron laser. Rev. Sci. Instrum. 91, 013109 (2020)

    Article  ADS  Google Scholar 

  56. K. Tiedtke, A. Azima, N. von Bargen, L. Bittner, S. Bonfigt, S. Düsterer, B. Faatz, U. Frühling, M. Gensch, C. Gerth, N. Guerassimova, U. Hahn, T. Hans, M. Hesse, K. Honkavaar, U. Jastrow, P. Juranic, S. Kapitzki, B. Keitel, T. Kracht, M. Kuhlmann, W.B. Li, M. Martins et al., The soft x-ray free-electron laser FLASH at DESY: beamlines, diagnostics and end-stations. New J. Phys. 11, 023029 (2009)

    Article  ADS  Google Scholar 

  57. G. Wang, A. Chernikov, M.M. Glazov, T.F. Heinz, X. Marie, T. Amand, B. Urbaszek, Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  58. R. Bertoni, C. Nicholson, L. Waldecker, H. Hübener, C. Monney, U.D. Giovannini, M. Puppin, M. Hoesch, E. Springate, R. Chapman, C. Cacho, M. Wolf, A. Rubio, R. Ernstorfer, Generation and evolution of spin-, valley-, and layer-polarized excited carriers in inversion-symmetric WSe\(_2\). Phys. Rev. Lett. 117, 277201 (2016)

    Article  Google Scholar 

  59. S. Hädrich, J. Rothhardt, M. Krebs, S. Demmler, A. Klenke, A. Tünnermann, J. Limpert, Single-pass high harmonic generation at high repetition rate and photon flux. J. Phys. B: At., Mol. Opt. Phys. 49, 172002 (2016)

    Google Scholar 

  60. M. Büscher, R. Adam, C. Tusche, A. Hützen, C. Wiemann, Y.-J. Chen, C.M. Schneider, JuSPARC—the Jülich short-pulsed particle and radiation center. Journal Large-Scale Res Facilities (JLSRF) 6 (2020). https://doi.org/10.17815/jlsrf

  61. C. Wiemann, M. Patt, S. Cramm, M. Escher, M. Merkel, A. Gloskovskii, S. Thiess, W. Drube, C.M. Schneider, Probing buried layers by photoelectron spectromicroscopy with hard X-ray excitation. Appl. Phys. Lett. 100, 223106 (2012)

    Article  ADS  Google Scholar 

  62. A. Kindsmüller, C. Schmitz, C. Wiemann, K. Skaja, D.J. Wouters, R. Waser, C.M. Schneider, R. Dittmann, Valence change detection in memristive oxide based heterostructure cells by hard x-ray photoelectron emission spectroscopy. APL Mater 6, 046106 (2018)

    Article  ADS  Google Scholar 

  63. T. Wakita, T. Taniuchi, K. Ono, M. Suzuki, N. Kawamura, M. Takagaki, H. Miyagawa, F. Guo, T. Nakamura, T. Muro, H. Akinaga, T. Yokoya, M. Oshima, K. Kobayashi, Hard X-ray photoelectron emission microscopy as tool for studying buried layers. Japanese J Appl Phys 45, 1886 (2006)

    Article  ADS  Google Scholar 

  64. M. Patt, C. Wiemann, N. Weber, M. Escher, A. Gloskovskii, W. Drube, M. Merkel, C.M. Schneider, Bulk sensitive hard x-ray photoemission electron microscopy. Rev. Sci. Instrum. 85, 113704 (2014)

    Article  ADS  Google Scholar 

  65. C. Schlueter, A. Gloskovskii, K. Ederer, I. Schostak, S. Piec, I. Sarkar, Y. Matveyev, P. Lömker, M. Sing, R. Claessen, C. Wiemann, C.M. Schneider, K. Medjanik, G. Schönhense, P. Amann, A. Nilsson, W. Drube, The new dedicated HAXPES beamline P22 at PETRAIII. AIP Conf Proc 2054, 040010 (2019). https://doi.org/10.1063/1.5084611

    Article  Google Scholar 

  66. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632 (2009)

    Article  Google Scholar 

  67. R. Tromp, W. Wan, S. Schramm, Aberrations of the cathode objective lens up to fifth order. Ultramicroscopy 119, 33 (2012)

    Article  Google Scholar 

  68. H.J. Elmers, D. Kutnyakhov, S.V. Chernov, K. Medjanik, O. Fedchenko, A. Zaporozhchenko-Zymakova, M. Ellguth, C. Tusche, J. Viefhaus, G. Schönhense, Hosting of surface states in spin–orbit induced projected bulk band gaps of W(110) and Ir(111). J. Phys.: Condens. Matter 29, 255001 (2017)

    Google Scholar 

  69. G. Schönhense, K. Medjanik, S. Chernov, D. Kutnyakhov, O. Fedchenko, M. Ellguth, D. Vasilyev, A. Zaporozhchenko-Zymaková, D. Panzer, A. Oelsner, C. Tusche, B. Schönhense, J. Braun, J. Minár, H. Ebert, J. Viefhaus, W. Wurth, H. Elmers, Spin-filtered time-of-flight k-space microscopy of Ir—towards the “complete” photoemission experiment. Ultramicroscopy 183, 19 (2017)

    Google Scholar 

  70. J. Viefhaus, F. Scholz, S. Deinert, L. Glaser, M. Ilchen, J. Seltmann, P. Walter, F. Siewert, The variable polarization XUV beamline P04 at PETRA III: optics, mechanics and their performance. Nucl. Instrum. Methods Phys. Res., Sect. A 710, 151 (2013)

    Google Scholar 

  71. G. Schönhense, K. Medjanik, C. Tusche, M. de Loos, B. van der Geer, M. Scholz, F. Hieke, N. Gerken, J. Kirschner, W. Wurth, Correction of the deterministic part of space-charge interaction in momentum microscopy of charged particles. Ultramicroscopy 159, 488 (2015)

    Article  Google Scholar 

  72. M. Kolbe, P. Lushchyk, B. Petereit, H.J. Elmers, G. Schönhense, A. Oelsner, C. Tusche, J. Kirschner, Highly efficient multichannel spin-polarization detection. Phys. Rev. Lett. 107, 207601 (2011)

    Article  ADS  Google Scholar 

  73. J. Kirschner, R. Feder, Spin polarization in double diffraction of low-energy electrons from W(001): experiment and theory. Phys. Rev. Lett. 42, 1008 (1979)

    Article  ADS  Google Scholar 

  74. R. Feder, Spin-polarised low-energy electron diffraction. J. Phys. C: Solid State Phys. 14, 2049 (1981)

    Article  ADS  Google Scholar 

  75. D. Yu, C. Math, M. Meier, M. Escher, G. Rangelov, M. Donath, Characterisation and application of a SPLEED-based spin polarisation analyser. Surf. Sci. 601, 5803 (2007)

    Article  ADS  Google Scholar 

  76. F. Lofink, S. Hankemeier, R. Froömter, J. Kirschner, H.P. Oepen, Long-time stability of a low-energy electron diffraction spin polarization analyzer for magnetic imaging. Rev. Sci. Instrum. 83, 023708 (2012)

    Article  ADS  Google Scholar 

  77. D. Kutnyakhov, P. Lushchyk, A. Fognini, D. Perriard, M. Kolbe, K. Medjanik, E. Fedchenko, S. Nepijko, H. Elmers, G. Salvatella, C. Stieger, R. Gort, T. Bähler, T. Michlmayer, Y. Acremann, A. Vaterlaus, F. Giebels, H. Gollisch, R. Feder, C. Tusche, A. Krasyuk, J. Kirschner, G. Schönhense, Imaging spin filter for electrons based on specular reflection from iridium (001). Ultramicroscopy 130, 63 (2013)

    Article  Google Scholar 

  78. J. Kirschner, F. Giebels, H. Gollisch, R. Feder, Spin-polarized electron scattering from pseudomorphic Au on Ir(001). Phys. Rev. B 88, 125419 (2013)

    Article  ADS  Google Scholar 

  79. M. Hahn, G. Schönhense, E.A. Jorge, M. Jourdan, Significant spin polarization of Co\(_2\)MnGa Heusler thin films on MgO(100) measured by ultraviolet photoemission spectroscopy. Appl. Phys. Lett. 98, 232503 (2011)

    Article  ADS  Google Scholar 

  80. C. Tusche, M. Ellguth, A. Krasyuk, A. Winkelmann, D. Kutnyakhov, P. Lushchyk, K. Medjanik, G. Schönhense, J. Kirschner, Quantitative spin polarization analysis in photoelectron emission microscopy with an imaging spin filter. Ultramicroscopy 130, 70 (2013)

    Article  Google Scholar 

  81. Y.A. Mamaev, L.G. Gerchikov, Y.P. Yashin, D.A. Vasiliev, V.V. Kuzmichev, V.M. Ustinov, A.E. Zhukov, V.S. Mikhrin, A.P. Vasiliev, Optimized photocathode for spin-polarized electron sources. Appl. Phys. Lett. 93, 081114 (2008)

    Article  ADS  Google Scholar 

  82. D. Kutnyakhov, H.J. Elmers, G. Schönhense, C. Tusche, S. Borek, J. Braun, J. Minár, H. Ebert, Specular reflection of spin-polarized electrons from the W(001) spin-filter crystal in a large range of scattering energies and angles. Phys. Rev. B 91, 014416 (2015)

    Google Scholar 

  83. C. Thiede, C. Langenkämper, K. Shirai, A.B. Schmidt, T. Okuda, M. Donath, Reflectivity and Sherman maps of passivated Fe(001): working points for a display-type spin-polarization analyzer. Phys. Rev. Appl 1, 054003 (2014)

    Article  ADS  Google Scholar 

  84. M. Hoesch, M. Muntwiler, V.N. Petrov, M. Hengsberger, L. Patthey, M. Shi, M. Falub, T. Greber, J. Osterwalder, Spin structure of the Shockley surface state on \(\rm Au(111)\). Phys. Rev. B 69, 241401 (2004)

    Article  ADS  Google Scholar 

  85. C.M. Cacho, S. Vlaic, M. Malvestuto, B. Ressel, E.A. Seddon, F. Parmigiani, Absolute spin calibration of an electron spin polarimeter by spin-resolved photoemission from the Au(111) surface states. Rev. Sci. Instrum. 80, 043904 (2009)

    Article  ADS  Google Scholar 

  86. C. Jozwiak, J. Graf, G. Lebedev, N. Andresen, A.K. Schmid, A.V. Fedorov, F. El Gabaly, W. Wan, A. Lanzara, Z. Hussain, A high-efficiency spin-resolved photoemission spectrometer combining time-of-flight spectroscopy with exchange-scattering polarimetry. Rev. Sci. Instrum. 81, 053904 (2010)

    Article  ADS  Google Scholar 

  87. D. Kutnyakhov, S. Chernov, K. Medjanik, R. Wallauer, C. Tusche, M. Ellguth, S.A. Nepijko, M. Krivenkov, J. Braun, S. Borek, J. Minár, H. Ebert, H.J. Elmers, G. Schönhense, Spin texture of time-reversal symmetry invariant surface states on W(110). Sci. Rep. 6, 29394 (2016)

    Article  ADS  Google Scholar 

  88. H.J. Elmers, R. Wallauer, M. Liebmann, J. Kellner, M. Morgenstern, R.N. Wang, J.E. Boschker, R. Calarco, J. Sánchez-Barriga, O. Rader, D. Kutnyakhov, S.V. Chernov, K. Medjanik, C. Tusche, M. Ellguth, H. Volfova, S. Borek, J. Braun, J. Minár, H. Ebert, G. Schönhense, Spin mapping of surface and bulk Rashba states in ferroelectric \(\alpha \)-GeTe(111) films. Phys. Rev. B 94, 201403(R) (2016)

    Article  ADS  Google Scholar 

  89. M.Z. Hasan, C.L. Kane, Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  90. D.D. Sante, P. Barone, R. Bertacco, S. Picozzi, Electric control of the giant Rashba effect in bulk GeTe. Adv. Mater. 25, 509 (2012)

    Article  Google Scholar 

  91. J. Wunderlich, B.-G. Park, A.C. Irvine, L.P. Zarbo, E. Rozkotova, P. Nemec, V. Novak, J. Sinova, T. Jungwirth, Spin Hall effect transistor. Science 330, 1801 (2010)

    Article  ADS  Google Scholar 

  92. E. Bauer, Surface Microscopy with Low Energy Electrons (Springer, New York, 2014)

    Book  Google Scholar 

  93. J. Sánchez-Barriga, J. Minár, J. Braun, A. Varykhalov, V. Boni, I. Di Marco, O. Rader, V. Bellini, F. Manghi, H. Ebert, M.I. Katsnelson, A.I. Lichtenstein, O. Eriksson, W. Eberhardt, H.A. Dürr, J. Fink, Quantitative determination of spin-dependent quasiparticle lifetimes and electronic correlations in hcp cobalt. Phys. Rev. B 82, 104414 (2010)

    Article  ADS  Google Scholar 

  94. E. Młyńczak, M.C.T.D. Müller, P. Gospodarič, T. Heider, I. Aguilera, G. Bihlmayer, M. Gehlmann, M. Jugovac, G. Zamborlini, C. Tusche, S. Suga, V. Feyer, L. Plucinski, C. Friedrich, S. Blügel, C.M. Schneider, Kink far below the Fermi level reveals new electron-magnon scattering channel in Fe. Nat. Commun. 10, 505 (2019)

    Article  ADS  Google Scholar 

  95. J. Van Klinken, Double scattering of electrons. Nucl. Phys. 75, 161 (1966)

    Article  Google Scholar 

  96. U. Heinzmann, New vacuum-ultraviolet absorption data for lead vapour obtained by spin-polarisation measurements. J. Phys. B: At. Mol. Phys. 11, 399–412 (1978)

    Article  ADS  Google Scholar 

  97. J. Kirschner, R. Feder, J.F. Wendelken, Electron spin polarization in energy- and angle-resolved photoemission from W(001): experiment and theory. Phys. Rev. Lett. 47, 614 (1981)

    Article  ADS  Google Scholar 

  98. E. Kisker, Electron spectrometer for spin-polarized angle- and energy-resolved photoemission from ferromagnets. Rev. Sci. Instrum. 53, 1137 (1982)

    Article  ADS  Google Scholar 

  99. L.G. Gray, M.W. Hart, F.B. Dunning, G.K. Walters, Simple, compact, medium-energy Mott polarization analyzer. Rev. Sci. Instrum. 55, 88 (1984)

    Article  ADS  Google Scholar 

  100. D. Tillmann, R. Thiel, E. Kisker, Very-low-energy spin-polarized electron diffraction from Fe(001). Z. Physik B—Condensed Matter 77, 1 (1989)

    Article  ADS  Google Scholar 

  101. S. Qiao, A. Kimura, A. Harasawa, M. Sawada, J.-G. Chung, A. Kakizaki, A new compact electron spin polarimeter with a high efficiency. Rev. Sci. Instrum. 68, 4390 (1997)

    Article  ADS  Google Scholar 

  102. V.N. Petrov, V.V. Grebenshikov, A.N. Andronov, P.G. Gabdullin, A.V. Maslevtcov, Ultrafast compact classical Mott polarimeter. Rev. Sci. Instrum. 78, 025102 (2007)

    Article  ADS  Google Scholar 

  103. F.U. Hillebrecht, R.M. Jungblut, L. Wiebusch, C. Roth, H.B. Rose, D. Knabben, C. Bethke, N.B. Weber, S. Manderla, U. Rosowski et al., High-efficiency spin polarimetry by very-low-energy electron scattering from Fe(100) for spin-resolved photoemission. Rev. Sci. Instrum. 73, 1229 (2002)

    Article  ADS  Google Scholar 

  104. A. Winkelmann, D. Hartung, H. Engelhard, C.-T. Chiang, J. Kirschner, High efficiency electron spin polarization analyzer based on exchange scattering at Fe/W(001). Rev. Sci. Instrum. 79, 083303 (p. 6) (2008)

    Google Scholar 

  105. T. Okuda, Y. Takeichi, Y. Maeda, A. Harasawa, I. Matsuda, T. Kinoshita, A. Kakizaki, A new spin-polarized photoemission spectrometer with very high efficiency and energy resolution. Rev. Sci. Instrum. 79, 123117 (2008)

    Article  ADS  Google Scholar 

  106. J. de la Figuera, C. Tusche, The Verwey transition observed by spin-resolved photoemission electron microscopy. Appl. Surf. Sci. 391, 66 (2016)

    Article  Google Scholar 

  107. W. Kuch, R. Frömter, J. Gilles, D. Hartmann, C. Ziethen, C.M. Schneider, G. Schönhense, W. Swiech, J. Kirschner, Element-selective magnetic imaging in exchange-coupled systems by magnetic photoemission microscopy. Surf. Rev. Lett. 05, 1241 (1998)

    Article  ADS  Google Scholar 

  108. A. Krasyuk, A. Oelsner, S. Nepijko, A. Kuksov, C. Schneider, G. Schönhense, Time-resolved photoemission electron microscopy of magnetic field and magnetisation changes. Appl. Phys. A: Mater. Sci. Process. 76, 863 (2003)

    Google Scholar 

  109. J. Vogel, W. Kuch, M. Bonfim, J. Camarero, Y. Pennec, F. Offi, K. Fukumoto, J. Kirschner, A. Fontaine, S. Pizzini, Time-resolved magnetic domain imaging by x-ray photoemission electron microscopy. Appl. Phys. Lett. 82, 2299 (2003)

    Article  ADS  Google Scholar 

  110. N. Rougemaille, A.K. Schmid, Magnetic imaging with spin-polarized low-energy electron microscopy. Eur. Phys. J. Appl. Phys. 50, 20101 (2010)

    Article  ADS  Google Scholar 

  111. M. Ellguth, C. Tusche, J. Kirschner, Optical generation of hot spin-polarized electrons from a ferromagnetic two-dimensional electron gas. Phys. Rev. Lett. 115, 266801 (2015)

    Article  ADS  Google Scholar 

  112. S.J. Hanna, P. Campuzano-Jost, E.A. Simpson, D.B. Robb, I. Burak, M.W. Blades, J.W. Hepburn, A.K. Bertram, A new broadly tunable (7.4–10.2eV) laser based VUV light source and its first application to aerosol mass spectrometry. Int. J. Mass Spectrom. 279, 134 (2009)

    Google Scholar 

  113. Z. Zhao, Y. Kobayashi, Realization of a mW-level 10.7-eV (\(\lambda = 115.6\,\)nm) laser by cascaded third harmonic generation of a Yb:fiber CPA laser at 1-MHz. Opt. Express 25, 13517 (2017)

    Google Scholar 

  114. H.L. Meyerheim, C. Tusche, Atomic and electronic structure of the clean and adsorbate covered (0001) surface of the topological insulator Bi\(_2\)Se\(_3\). Phys. Status Solidi RRL 12, 1800078 (2018)

    Article  Google Scholar 

  115. C.-H. Park, S.G. Louie, Spin polarization of photoelectrons from topological insulators. Phys. Rev. Lett. 109, 097601 (2012)

    Article  ADS  Google Scholar 

  116. C. Jozwiak, C.-H. Park, K. Gotlieb, C. Hwang, D.-H. Lee, S.G. Louie, J.D. Denlinger, C.R. Rotundu, R.J. Birgeneau, Z. Hussain, A. Lanzara, Photoelectron spin-flipping and texture manipulation in a topological insulator. Nat. Phys. 9, 293 (2013)

    Article  Google Scholar 

  117. J. Sánchez-Barriga, A. Varykhalov, J. Braun, S.-Y. Xu, N. Alidoust, O. Kornilov, J. Minár, K. Hummer, G. Springholz, G. Bauer, R. Schumann, L.V. Yashina, H. Ebert, M.Z. Hasan, O. Rader, Photoemission of Bi\(_2\)Se\(_3\) with circularly polarized light: probe of spin polarization or means for spin manipulation? Phys. Rev. X 4, 011046 (2014)

    Google Scholar 

  118. H. Bentmann, H. Maaß, E. Krasovskii, T. Peixoto, C. Seibel, M. Leandersson, T. Balasubramanian, F. Reinert, Strong linear dichroism in spin-polarized photoemission from spin-orbit-coupled surface states. Phys. Rev. Lett. 119, 106401 (2017)

    Article  ADS  Google Scholar 

  119. Z. Xie, S. He, C. Chen, Y. Feng, H. Yi, A. Liang, L. Zhao, D. Mou, J. He, Y. Peng et al., Orbital-selective spin texture and its manipulation in a topological insulator. Nat. Commun. 5, 3382 (2014)

    Article  ADS  Google Scholar 

  120. H. Maaß, H. Bentmann, C. Seibel, C. Tusche, S.V. Eremeev, T.R.F. Peixoto, O.E. Tereshchenko, K.A. Kokh, E.V. Chulkov, J. Kirschner, F. Reinert, Spin-texture inversion in the giant Rashba semiconductor BiTeI. Nat. Commun. 7, 11621 (2016)

    Article  ADS  Google Scholar 

  121. A.M. Black-Schaffer, A.V. Balatsky, Subsurface impurities and vacancies in a three-dimensional topological insulator. Phys. Rev. B 86, 115433 (2012)

    Article  ADS  Google Scholar 

  122. A. Polyakov, C. Tusche, M. Ellguth, E.D. Crozier, K. Mohseni, M.M. Otrokov, X. Zubizarreta, M.G. Vergniory, M. Geilhufe, E.V. Chulkov, A. Ernst, H.L. Meyerheim, S.S.P. Parkin, Instability of the topological surface state in Bi\(_2\)Se\(_3\) upon deposition of gold. Phys. Rev. B 95, 180202(R) (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigemasa Suga .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suga, S., Sekiyama, A., Tusche, C. (2021). Momentum Microscopy. In: Photoelectron Spectroscopy. Springer Series in Surface Sciences, vol 72. Springer, Cham. https://doi.org/10.1007/978-3-030-64073-6_11

Download citation

Publish with us

Policies and ethics