Skip to main content

Network Design with Routing Requirements

  • Chapter
  • First Online:
Network Design with Applications to Transportation and Logistics

Abstract

Many practical applications of network design, particularly in transportation and logistics, require designing a cost-effective network configuration to meet all demand at total fixed and flow costs, subject to additional constraints on routing decisions to ensure good end-to-end service performance. For instance, in settings such as package delivery, rail freight operations, vehicle routing, and crew scheduling, these service requirements include upper limits on the permissible end-to-end transit time or number of intermediate transshipments. This chapter discusses modeling and methodological issues for effectively solving fixed-charge network design problems with routing requirements (NDRR). As a generalization of various well-known and difficult optimization problems, this problem is NP-hard; the added routing restrictions increase computational difficulty even to find feasible solutions. The literature on the general NDRR problem is relatively sparse. We first discuss some recent results and a composite algorithm that combines problem reduction, valid inequalities, and heuristics with branch-and-bound to effectively solve problem instances with varying characteristics. Next, we review theoretical developments, modeling strategies, and algorithms for two well-studied special cases of the NDRR problem, namely, constrained shortest path and hop-constrained network design models. Researchers have developed approximation algorithms, polyhedral results, extended model formulations, and specialized algorithms for these special cases. These results and methods point to possible avenues for further research on generalizing the approaches to the NDRR problem. The chapter concludes by outlining decomposition solution methods, and summarizing some key observations and learnings regarding the NDRR problem.

In Memory of Randy Magnanti

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, R., & Ergun, O. (2008). Ship scheduling and network design for cargo routing in linear shipping. Transportation Science, 42, 175–196.

    Article  Google Scholar 

  • Ahuja, R. K., Jha, K. C., & Liu, J. (2007). Solving real-life railroad blocking problems. Interfaces, 37, 404–419.

    Article  Google Scholar 

  • Althaus, E., Funke, S., Har-Peled, S., Konemann, J., Ramos, E. A., & Skutella, M. (2005). Approximating k-hop minimum-spanning trees. Operations Research Letters, 33, 115–120.

    Article  Google Scholar 

  • Armacost, A. P., Barnhart, C., Ware, K. A. (2002). Composite variable formulations for express shipment service network design. Transportation Science, 36, 1–20.

    Article  Google Scholar 

  • Atamtürk, A., & Rajan, D. (2002). On splittable and unsplittable flow capacitated network design arc-set polyhedra . Mathematical Programming, 92, 315–333.

    Article  Google Scholar 

  • Balakrishnan A., & Altinkemer, K. (1992). Using a hop-constrained model to generate alternative communication network designs. INFORMS Journal on Computing, 4, 192–205.

    Article  Google Scholar 

  • Balakrishnan, A., & Karsten, C. V. (2017). Container shipping service selection and cargo routing with transshipment limits. European Journal of Operational Research, 263, 652–663.

    Article  Google Scholar 

  • Balakrishnan, A., Li, G., & Mirchandani, P. (2017). Optimal network design with end-to-end service requirements. Operations Research, 65, 729–750.

    Article  Google Scholar 

  • Balakrishnan, A., Magnanti, T. L., & Mirchandani, P. (1996) Heuristics, LPs, and trees on trees: Network design analyses. Operations Research, 44, 478–496.

    Article  Google Scholar 

  • Balakrishnan, A., Magnanti, T. L., & Mirchandani, P. (1997). Network design. In M. Dell’Amico, F. Maffioli, & S. Martello (Eds.), Annotated bibliographies in combinatorial optimization (pp. 311–334). New York: John Wiley and Sons.

    Google Scholar 

  • Balakrishnan, A., Magnanti, T. L., & Wong, R. T. (1989). A dual-ascent procedure for large-scale uncapacitated network design. Operations Research, 37, 716–740.

    Article  Google Scholar 

  • Balakrishnan, A., Mirchandani, P., & Natarajan, H. P. (2009). Connectivity upgrade models for survivable network design. Operations Research, 57, 170–186.

    Article  Google Scholar 

  • Balakrishnan, A., Mirchandani, P., & Wong, R. T. (2020). On multi-constrained path, tree, and network design problems. Working paper

    Google Scholar 

  • Barnhart, C., Jin, H., & Vance, P. (2000). Railroad blocking: A network design applications. Operations Research, 48, 603–614.

    Article  Google Scholar 

  • Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., & Vance, P. (1998) Branch-and-price: Column generation for solving huge integer programs. Operations Research, 46, 316–329.

    Article  Google Scholar 

  • Barnhart, C., & Schneur, R. (1996). Air network design for express shipment service . Operations Research, 44, 852–863.

    Article  Google Scholar 

  • Benhamiche, A., Mahjoub, A. R., Perrot, N., & Uchoa, E. (2016). Unsplittable non-additive capacitated network design using set functions polyhedra. Computers and Operations Research, 66, 105–115.

    Article  Google Scholar 

  • Bienstock, D., Günlük, O. (1996). Capacitated network design – Polyhedral structure and computation. INFORMS Journal on Computing, 8, 243–259.

    Article  Google Scholar 

  • Boland, N., Hewitt, M., Marshall, L., & Savelsbergh, M. (2017). The continuous-time service network design problem. Operations Research, 65, 1303–1321.

    Article  Google Scholar 

  • Boland N, Hewitt M, Marshall, L., & Savelsbergh, M. (2019). The price of discretizing time: a study in service network design. Euro Journal on Transportation and Logistics, 8, 195–216.

    Article  Google Scholar 

  • Botton, Q., Fortz, B., Gouveia, L., & Poss, M. (2013). Benders decomposition for the hop-constrained survivable network design problem. INFORMS Journal on Computing, 25, 13–26.

    Article  Google Scholar 

  • Brockmüller, B., Günlük, O., & Wolsey, L. A. (2004). Designing private line networks: polyhedral analysis and computation. Transactions on Operational Research, 16, 7–24.

    Google Scholar 

  • Camargo, R., de Miranda, G., Jr., O’Kelly, M., & Campbell, J. (2017). Formulations and decomposition methods for the incomplete hub location problem with and without hop-constraints. Applied Mathematical Modelling, 51, 274–301.

    Google Scholar 

  • Conforti, M., Cornuejols, G., & Zambelli, G. (2010). Extended formulations in combinatorial optimization. 4OR: A Quarterly Journal of Operations Research, 8, 1–48.

    Article  Google Scholar 

  • Conforti, M., Cornuejols, G., & Zambelli, G. (2014). Integer programming. Heidelberg, Springer.

    Book  Google Scholar 

  • Costa, L., Contardo, C., & Desaulniers, G. (2019). Exact branch-price-and-cut algorithms for vehicle routing. Transportation Science, 53, 946–985.

    Article  Google Scholar 

  • Coulard, C., Gamble, B., & Liu, J. (1994). The K-walk polyhedron. In D.-Z. Du & J. Sen (Eds.), Advances in optimization and approximation. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Crainic, T. G. (2000). Service network design in freight transportation. European Journal of Operational Research, 122, 272–288.

    Article  Google Scholar 

  • Dahl, G. (1998). The 2-hop spanning tree problem. Operations Research Letters, 23, 21–26.

    Article  Google Scholar 

  • Dahl, G., & Gouveia, L. (2004). On the directed hop-constrained shortest path problem. Operations Research Letters, 32, 15–22.

    Article  Google Scholar 

  • De Boeck, J., & Fortz, B. (2017). Extended formulation for hop constrained distribution network configuration problems. European Journal of Operational Research, 265, 488–502.

    Article  Google Scholar 

  • Desaulniers, G., Madsen, O. B., & Ropke, S. (2014). The vehicle routing problem with time windows. In P. Toth, & D. Vigo (Eds.), Vehicle routing: Problems, methods, and applications, MOS-SIAM series on optimization (Vol. 18, pp. 119–159). Philadelphia: SIAM.

    Chapter  Google Scholar 

  • Desrochers, M., & Soumis, F. (1988). A generalized permanent labelling algorithm for the shortest path problem with time windows. INFOR: Information Systems and Operational Research, 26, 191–212.

    Google Scholar 

  • Desrosiers, J., Dumas, Y., Solomon, M., & Soumis, F. (1995). Time constrained routing and scheduling. In M. Ball, T. L. Magnanti, C. Monma, & G. L. Nemhauser (Eds.), Handbooks in operations research and management science (Vol. 8, pp. 35–139). Amsterdam: Elsevier.

    Google Scholar 

  • Dumitrescu, I., & Boland, N. (2003). Improved preprocessing, labeling, and scaling algorithms for the weight-constrained shortest path problem. Networks, 42, 135–153.

    Article  Google Scholar 

  • Ergun, F., Sinha, R., & Zhang, L. (2002). An improved FPTAS for restricted shortest path. Information Processing Letters, 83, 287–291.

    Article  Google Scholar 

  • Estrada, M., & Robuste, F. (2009). Long-Haul shipment optimization for less-than-truckload carriers. Transportation Research Record: Journal of the Transportation Research Board, 2091, 12–20.

    Article  Google Scholar 

  • Feng, G., & Korkmaz, T. (2015). Finding multi-constrained multiple shortest paths. IEEE Transactions on Computers, 64, 2559–2572.

    Article  Google Scholar 

  • Fiorini, S., & Pashkovich, K. (2015). Uncapacitated flow-based extended formulations. Mathematical Programming, 153, 117–131.

    Article  Google Scholar 

  • Garey, M. R., & Johnson, D. S. (2002). Computers and intractability: A guide to the theory of NP completeness. San Francisco: W. H. Freeman.

    Google Scholar 

  • Gendron, B., Crainic, T.G., & Frangioni, A. (1999). Multicommodity capacitated network design. In B. Sansò & P. Soriano (Eds.), Telecommunications network planning (pp. 1–19). Centre for Research on Transportation. Boston: Springer.

    Google Scholar 

  • Gopalakrishnan, B., & Johnson, E. L. (2005). Airline crew scheduling: State-of-the-art. Annals of Operations Research 140, 305–337.

    Article  Google Scholar 

  • Gouveia, L. (1998). Using variable redefinition for computing lower bounds for minimum spanning tree and Steiner tree with hop constraints. INFORMS Journal on Computing, 10, 180–188.

    Article  Google Scholar 

  • Gouveia, L., & Magnanti, T. L. (2003). Network flow models for designing diameter-constrained spanning and Steiner trees. Networks, 41, 159–173.

    Article  Google Scholar 

  • Gouveia, L., Magnanti, T. L., & Requejo, C. (2004). A 2-path approach for odd diameter-constrained minimum spanning and Steiner trees. Networks, 44, 254–265.

    Article  Google Scholar 

  • Gouveia, L., Magnanti, T. L., & Requejo, C. (2006) An intersecting tree model for odd-iameter-constrained minimum spanning and Steiner trees. Annals of Operations Research, 146, 19–39.

    Article  Google Scholar 

  • Gouveia, L., & Martins, P. (1999). The capacitated minimal spanning tree problem: An experiment with a hop-indexed model. Annals of Operations Research 86, 271–294.

    Article  Google Scholar 

  • Gouveia, L., Simonetti, L., & Uchoa, E. (2011). Modeling hop-constrained and diameter-constrained minimum spanning tree problems as Steiner tree problems over layered graphs. Mathematical Programming, 128, 123–148.

    Article  Google Scholar 

  • Grandoni, F., Ravi, R., Singh, M., & Zenklusen, R. (2014). New approaches to multi-objective optimization. Mathematical Programming, 146, 525–554.

    Article  Google Scholar 

  • Grötschel, M., Monma, C. L., & Stoer, M. (1995). Design of survivable networks. In M. Ball, T. L. Magnanti, C. Monma, G. L. Nemhauser (Eds.), Handbooks in operations research and management science (Vol. 7, pp. 617–672). Amsterdam: Elsevier.

    Google Scholar 

  • Grötschel, M., & Stephan, R. (2014). Characterization of facets of the hop-constrained chain polytope via dynamic programming. Discrete Applied Mathematics, 162, 229–246.

    Article  Google Scholar 

  • Handler, G., & Zang, I. (1980). A dual algorithm for the constrained shortest path problem. Networks, 10, 293–309.

    Article  Google Scholar 

  • Hassin, R. (1992). Approximation schemes for the restricted shortest path problem. Mathematics of Operations Research, 17, 36–42.

    Article  Google Scholar 

  • Hassin, R., & Levin, A. (2003). Minimum spanning tree with hop restrictions. Journal of Algorithms, 48, 220–238.

    Article  Google Scholar 

  • Holloway, C. (1973). A generalized approach to Dantzig-Wolfe decomposition for concave programs. Operations Research, 21, 210–220.

    Article  Google Scholar 

  • Karsten, C. V., Brouer, B. D., Desaulniers, G., & Pisinger, D. (2017). Time constrained liner shipping network design. Transportation Research Part E, 105, 152–162.

    Article  Google Scholar 

  • Kortsarz, G., & Peleg, D. (1999). Approximating the weight of shallow Steiner trees. Discrete Applied Mathematics, 93, 265–285.

    Article  Google Scholar 

  • Lawler, E. L. (1976). Combinatorial optimization: Networks and matroids. New York: Courier Corporation.

    Google Scholar 

  • Leitner, M., Ruthmair, M., & Raidl, G. (2012). Stabilizing branch-and-price for constrained tree problems. Networks, 61, 150–170.

    Article  Google Scholar 

  • Lemaréchal, C., Nemirovskii, A., & Nesterov, Y. (1995). New variants of bundle methods. Mathematical Programming, 69, 111–147.

    Article  Google Scholar 

  • Lorenz, D. H., & Raz, D. (2001). A simple efficient approximation scheme for the restricted shortest path problem. Operations Research Letters, 28, 213–219.

    Article  Google Scholar 

  • Lübbecke, M. E., & Desrosiers, J. (2005). Selected topics in column generation. Operations Research, 53, 1007–1023.

    Article  Google Scholar 

  • Maculan, N. (1987). The Steiner problem in graphs. Annals of Discrete Mathematics, 31, 185–212.

    Google Scholar 

  • Magnanti, T. L., Mirchandani, P., & Vachani, R. (1993). The convex hull of two core capacitated network design problems. Mathematical Programming, 60, 233–250.

    Article  Google Scholar 

  • Magnanti, T. L., Mirchandani, P., & Vachani, R. (1995). Modeling and solving the two-facility capacitated network loading problem. Operations Research, 43, 142–157.

    Article  Google Scholar 

  • Magnanti, T. L., & Wong, R. T. (1981). Accelerating Benders decomposition: Algorithmic enhancement and model selection criteria. Operations Research, 29, 464–484.

    Article  Google Scholar 

  • Magnanti, T. L., & Wong, R. T. (1984). Network design and transportation planning: Models and algorithms. Transportation Science, 18, 1–55.

    Article  Google Scholar 

  • Malandraki, C., Zaret, D., Perez, J., & Holland, C. (2001). Industrial engineering applications in transportation. In G. Salvendy (Eds.), Handbook of industrial engineering (3rd ed., pp. 787–824). New York: John Wiley and Sons.

    Chapter  Google Scholar 

  • Marathe, M. V., Ravi, R., Sundaram, R., Ravi, S. S., Rosenkrantz, D. J., & Hunt, H. B. (1998). Bicriteria network design problems. Journal of Algorithms, 28, 142–171.

    Article  Google Scholar 

  • Mirchandani, P. (2000). Projections of the capacitated network loading problem. European Journal of Operational Research, 122, 534–560.

    Article  Google Scholar 

  • Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization. New York: Wiley.

    Book  Google Scholar 

  • Poggi de Arago, M., & Uchoa, E. (2003). Integer program reformulation for robust branch-and-cut-and-price. In L. Wolsey (Ed.), Annals of Mathematical Programming in Rio (pp. 59–61)

    Google Scholar 

  • Pugliese, L. D. P., & Guerriero, F. (2013). A survey of resource constrained shortest path problems: Exact solution approaches. Networks, 62, 183–200.

    Article  Google Scholar 

  • Rahmaniani, R., Crainic, T. G., Gendreau, M., & Rei, W. (2017). The Benders decomposition algorithm: A literature review. European Journal of Operational Research, 259, 801–817.

    Article  Google Scholar 

  • Rardin, R. L., & Choe, U. (1979). Tighter relaxations of fixed charge network flow problems. Industrial and Systems Engineering Report J-79-18, Georgia Institute of Technology

    Google Scholar 

  • Rardin, R. L., & Wolsey, L. A. (1993). Valid inequalities and projecting the multicommodity extended formulation for uncapacitated fixed charge network flow problems. European Journal of Operational Research, 71, 95–109.

    Article  Google Scholar 

  • Reidl, W. (2017). A complete characterization of jump inequalities for the hop-constrained shortest path problem. Discrete Applied Mathematics, 225, 85–113.

    Google Scholar 

  • Ruthmair, M., & Raidl, G. (2011). Layered graph model and an adaptive layers framework to solve delay–constrained minimum tree problems. In O. Gunluk & G. Woeginger (Eds.), IPCO 2011 (pp. 276–288). Berlin Heidelberg, Springer-Verlag.

    Google Scholar 

  • Stephan, R. (2009). Facets of the (s,t)-path polytope. Discrete Applied Mathematics, 157, 3119–3132.

    Article  Google Scholar 

  • Uchoa, E., Fukasawa, F., Lysgaard, J., Pessoa, A., Poggi de Arago, M., & Andrade, D. (2008). Robust branch-cut-and-price for the capacitated minimum spanning tree problem over a large extended formulation. Mathematical Programming, 112, 443–472.

    Article  Google Scholar 

  • Vanderbeck, F., & Wolsey, L. A. (2010). Reformulation and decomposition of integer programs. In M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, & L. A. Wolsey (Eds.), 50 Years of integer programming 1958–2008 (pp. 431–502). Berlin Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  • Vazirani, V. V. (2013). Approximation algorithms. New York: Springer Science & Business Media.

    Google Scholar 

  • Vidal, T., Crainic, T. G., Gendreau, M., & Prins, C. (2013). Heuristics for multi-attribute vehicle routing problems: A survey and synthesis. European Journal of Operational Research, 231:1–21.

    Article  Google Scholar 

  • Warburton, A. (1987). Approximation of pareto optima in multiple–objective, shortest-path problems. Operations Research, 35, 70–79.

    Article  Google Scholar 

  • Wilhelm, W. E., Damodaran, P., & Li, J. (2003). Prescribing the content and timing of product upgrades. IIE Transactions, 35, 647–663.

    Article  Google Scholar 

  • Williamson, D. P., & Shmoys, D. B. (2011). The design of approximation algorithms. New York: Cambridge University Press.

    Book  Google Scholar 

  • Wolsey, L. (2011). Using extended formulations in practice. Optima, 85, 7–9.

    Google Scholar 

  • Yildiz, B., & Savelsbergh, M. (2019). Optimizing package express operations in China. Optimization Online 6799.

    Google Scholar 

  • Zabarankin, M., Uryasev, S., & Pardalos, P. (2001). Optimal risk path algorithms. In R. Murphey & P. Pardalos (Eds.), Cooperative control and optimization (pp. 271–303). Dordrecht: Kluwer.

    Google Scholar 

  • Zhu, E., Crainic, T. G., & Gendreau, M. (2014). Scheduled service network design for freight rail transportation. Operations Research, 62, 383–400.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anantaram Balakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balakrishnan, A., Magnanti, T.L., Mirchandani, P., Wong, R.T. (2021). Network Design with Routing Requirements. In: Crainic, T.G., Gendreau, M., Gendron, B. (eds) Network Design with Applications to Transportation and Logistics. Springer, Cham. https://doi.org/10.1007/978-3-030-64018-7_8

Download citation

Publish with us

Policies and ethics