Skip to main content

Abstract

The design of logistics networks is one of the most important areas of application for multicommodity network design models. Logistics networks (or supply chains) connect suppliers, manufacturing plants, warehouses, distribution centers and customers to coordinate the acquisition of raw materials and components, their transformation into finished products and the delivery of these products to the customers. Over the last 40 years, the realism of logistics network design models has greatly improved and efficient solution methods have been developed to solve these models. There is now a vast literature on the topic with a very large number of models addressing the many problem variants encountered in practice. This chapter provides a general modeling framework that can be used to express many of these variants and gives a brief overview of the main solution methodologies. It also discusses two important and recent trends: the treatment of risk and uncertainty in the design of logistics networks and the incorporation of environmental, sustainability and reverse logistics aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aikens, C. (1985). Facility location models for distribution planning. European Journal of Operational Research, 22, 263–279.

    Article  Google Scholar 

  • Akçalı, E., Çetinkaya, S., & Uster, H. (2009). Network design for reverse and closed-loop supply chains: An annotated bibliography of models and solution approaches. Networks, 53(3), 231–248.

    Article  Google Scholar 

  • Alumur, S. A., Nickel, S., Saldanha-da-Gama, F., & Verter, V. (2012). Multi-period reverse logistics network design. European Journal of Operational Research, 220, 67–78.

    Article  Google Scholar 

  • Arntzen, B., Brown, G., Harrison, T., & Trafton, L. (1995). Global supply chain management at Digital Equipment Corporation. Interfaces, 25(1), 69–93.

    Article  Google Scholar 

  • Badri, H., Bashiri, M., & Hejazia, T. (2013). Integrated strategic and tactical planning in a supply chain network design with a heuristic solution method. Computers & Operations Research, 40(4), 1143–1154.

    Article  Google Scholar 

  • Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52(1), 35–53.

    Article  Google Scholar 

  • Carle, M. A., Martel, A., & Zufferey, N. (2012). The CAT metaheuristic for the solution of multi-period activity-based supply chain network design problems. International Journal of Production Economics, 139(2), 664–677.

    Article  Google Scholar 

  • Chaabane, A., Ramudhin, A., & Paquet, M. (2012). Design of sustainable supply chains under the emission trading scheme. International Journal of Production Economics, 135, 37–49.

    Article  Google Scholar 

  • Cohen, M., & Lee, H. (1989). Resource deployment analysis of global manufacturing and distribution networks. Journal of Manufacturing and Operations Management, 2, 81–104.

    Google Scholar 

  • Cordeau, J. F., Laporte, G., & Pasin, F. (2008). An iterated local search heuristic for the logistics network design problem with single assignment. International Journal of Production Economics, 113(2), 626–640.

    Article  Google Scholar 

  • Cordeau, J. F., Pasin, F., & Solomon, M. (2006). An integrated model for logistics network design. Annals of Operations Research, 144, 59–82.

    Article  Google Scholar 

  • Correia, I., & Saldanha-da-Gama, F. (2015). Facility location und uncertainty. In G. Laporte, S. Nickel, & F. Saldanha-da-Gama (Eds.), Location science (pp. 177–203). Berlin: Springer.

    Chapter  Google Scholar 

  • Daskin, M. S. (2011). Network and discrete location: Models, algorithms, and applications. New York: Wiley.

    Google Scholar 

  • Dogan, K., & Goetschalckx, M. (1999). A primal decomposition method for the integrated design of multi-period production-distribution systems. IIE Transactions, 31, 1027–1036.

    Article  Google Scholar 

  • Dunke, F., Heckmann, I., Nickel, S., & Saldanha-da-Gama, F. (2018). Time traps in supply chains: Is optimal still good enough? European Journal of Operational Research, 264, 813–829.

    Article  Google Scholar 

  • Easwaran, G., Uster, H. (2010). A closed-loop supply chain network design problem with integrated forward and reverse channel decisions. IIE Transactions, 42, 779–792.

    Article  Google Scholar 

  • Elhedhli, S., & Goffin, J. L. (2005). Efficient production-distribution system design. Management Science, 51(7), 1151–1164.

    Article  Google Scholar 

  • Fan, Y., Schwartz, F., Voß, S., & Woodruff, D. L. (2017). Stochastic programming for flexible global supply chain planning. Flexible Services and Manufacturing Journal, 29, 601–633.

    Article  Google Scholar 

  • Fleischmann, B., Ferber, S., & Henrich, P. (2006). Strategic planning of BMW’s global production network. Interfaces, 36, 194–208.

    Article  Google Scholar 

  • Garcia, D. J., & You, F. (2015). Supply chain design and optimization: Challenges and opportunities. Computers & Chemical Engineering, 81, 153–170.

    Article  Google Scholar 

  • Geoffrion, A., & Graves, G. (1974). Multicommodity distribution system design by Benders decomposition. Management Science, 20, 822–844.

    Article  Google Scholar 

  • Giusti, R., Iorfida, C., Li, Y., Manerba, D., Musso, S., Perboli, G., et al. (2019). Sustainable and de-stressed international supply-chains through the synchro-net approach. Sustainability, 11(4), 1083.

    Article  Google Scholar 

  • Goetschalckx, M., Vidal, C., & Dogan, K. (2002). Modeling and design of global logistics systems: A review of integrated strategic and tactical models and design algorithms. European Journal of Operational Research, 143, 1–18.

    Article  Google Scholar 

  • Govindan, K., & Fattahi, M. (2017). Investigating risk and robustness measures for supply chain network design under demand uncertainty: A case study of glass supply chain. International Journal of Production Economics, 183, 680–699.

    Article  Google Scholar 

  • Govindan, K., Fattahi, M., & Keyvanshokooh, E. (2017). Supply chain network design under uncertainty: A comprehensive review and future research directions. European Journal of Operational Research, 263, 108–141.

    Article  Google Scholar 

  • Heckmann, I., Comes, T., & Nickel, S. (2015). A critical review on supply chain risk–definition, measure and modeling. Omega, 52,119–132.

    Article  Google Scholar 

  • Heckmann, I., & Nickel, S. (2017). Rethinking supply chain risk analysis – common flaws & main elements. Supply Chain Forum, 18, 84–95.

    Article  Google Scholar 

  • Hinojosa, Y., Kalcsics, J., Nickel, S., Puerto, J., & Velten, S. (2008). Dynamic supply chain design with inventory. Computers & Operations Research, 35(2), 373–391.

    Article  Google Scholar 

  • Jena, S. D., Cordeau, J. F., & Gendron, B. (2015). Dynamic facility location with generalized modular capacities. Transportation Science, 49(3), 484–499.

    Article  Google Scholar 

  • Klibi, W., Lasalle, F., Martel, A., & Ichoua, S. (2010a). The stochastic multiperiod location transportation problem. Transportation Science, 44(2), 221–237.

    Article  Google Scholar 

  • Klibi, W., & Martel, A. (2012). Scenario-based supply chain network risk modeling. European Journal of Operational Research, 223, 644–658.

    Article  Google Scholar 

  • Klibi, W., & Martel, A. (2013). The design of robust value-creating supply chain networks. OR Spectrum, 35(4), 867–903.

    Article  Google Scholar 

  • Klibi, W., Martel, A., & Guitouni, A. (2010b). The design of robust value-creating supply chain networks: a critical review. European Journal of Operational Research, 203(2), 283–293.

    Article  Google Scholar 

  • Laporte, G., Nickel, S., & Saldanha da Gama, F. (2016). Location science. New York: Springer.

    Google Scholar 

  • Mariel, K., & Minner, S. (2017). Benders decomposition for a strategic network design problem under NAFTA local content requirements. Omega, 68, 62–75.

    Article  Google Scholar 

  • Martel, A. (2005). The design of production-distribution networks: A mathematical programming approach. In J. Geunes, & P. Pardalos (Eds.), Supply chain optimization. New York: Springer.

    Google Scholar 

  • Martel, A., & Klibi, W. (2016). Designing value-creating supply chain networks. New York: Springer.

    Book  Google Scholar 

  • Melo, M., Nickel, S., & Saldanha-da-Gama, F. (2006). Dynamic multi-commodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning. Computers & Operations Research, 33(1), 181–208.

    Article  Google Scholar 

  • Melo, M., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management – A review. European Journal of Operational Research, 196(2), 401–412.

    Article  Google Scholar 

  • Melo, M., Nickel, S., & Saldanha-da-Gama, F. (2012). A tabu search heuristic for redesigning a multi-echelon supply chain network over a planning horizon. International Journal of Production Economics,136(1), 218–230.

    Google Scholar 

  • Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2014). An efficient heuristic approach for a multi-period logistics network redesign problem. TOP, 22(1), 80–108.

    Article  Google Scholar 

  • Mota, B., Gomes, M., Carvalho, A., & Barbosa-Povoa, A. (2014). Towards supply chain sustainability: Economic, environmental and social design and planning. Journal of Cleaner Production, 105, 14–27.

    Article  Google Scholar 

  • Nickel, S., & Saldanha-da-Gama, F. (2015). Multi-period facility location. In G. Laporte, S. Nickel, & F. Saldanha-da-Gama (Eds.), Location science (pp. 289–310). Berlin: Springer.

    Chapter  Google Scholar 

  • Pimentel, B. S., Mateus, G. R., & Almeida, F. A. (2013). Stochastic capacity planning and dynamic network design. International Journal of Production Economics, 145, 139–149.

    Article  Google Scholar 

  • Pirkul, H., & Jayaraman, V. (1998). A multi-commodity, multi-plant, capacitated facility location problem: Formulation and efficient heuristic solution. Computers & Operations Research, 25, 869–878.

    Article  Google Scholar 

  • ReVelle, C. S., & Eiselt, H. A. (2005). Location analysis: A synthesis and survey. European Journal of Operational Research, 165, 1–19.

    Article  Google Scholar 

  • Santoso, T., Ahmed, S., Goetschalckx, M., & Shapiro, A. (2005). A stochastic programming approach for supply chain network design under uncertainty. European Journal of Operational Research, 167, 96–115.

    Article  Google Scholar 

  • Schutz, P., Tomasgard, A., & Ahmed, S. (2009). Supply chain design under uncertainty using sample average approximation and dual decomposition. European Journal of Operational Research, 199, 409–419.

    Article  Google Scholar 

  • Shapiro, A., Dentcheva, D., & Ruszczynski, A. (2009). Lectures on stochastic programming. New York, USA: SIAM and MPS, USA.

    Book  Google Scholar 

  • Snyder, L., & Daskin, M. (2006). Stochastic p-robust location problems. IIE Transactions, 38(11), 971–985.

    Article  Google Scholar 

  • Tang, C., & Zhou, S. (2012). Research advances in environmentally and socially sustainable operations. European Journal of Operational Research, 223, 585–594.

    Article  Google Scholar 

  • Thanh, P. N., Bostel, N., & Peton, O. (2008). A dynamic model for facility location in the design of complex supply chains. International Journal of Production Economics, 113(2), 678–693.

    Article  Google Scholar 

  • Thanh, P. N., Peton, O., & Bostel, N. (2010). A linear relaxation-based heuristic approach for logistics network design. Computers & Industrial Engineering, 59(4), 964–975.

    Article  Google Scholar 

  • Ulstein, N., Christiansen, M., Grønhaug, R., Magnussen, N., & Solomon, M. (2006). Elkem uses optimization in redesigning its supply chain. Interfaces, 36, 314–325.

    Article  Google Scholar 

  • Vidal, C., & Goetschalckx, M. (1997). Strategic production-distribution models: A critical review with emphasis on global supply chain models. European Journal of Operational Research, 98, 1–18.

    Article  Google Scholar 

  • Vidal, C., & Goetschalckx, M. (2001). A global supply chain model with transfer pricing and transportation cost allocation. European Journal of Operational Research, 129, 134–158.

    Article  Google Scholar 

  • Wesolowsky, G., & Truscott, W. (1975). The multi-period location-allocation problem with relocation of facilities. Management Science, 22, 57–66.

    Article  Google Scholar 

  • You, F., & Grossmann, I. E. (2008). Design of responsive supply chains under demand uncertainty. Computers & Chemical Engineering, 32, 3090–3111.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Cordeau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cordeau, JF., Klibi, W., Nickel, S. (2021). Logistics Network Design. In: Crainic, T.G., Gendreau, M., Gendron, B. (eds) Network Design with Applications to Transportation and Logistics. Springer, Cham. https://doi.org/10.1007/978-3-030-64018-7_19

Download citation

Publish with us

Policies and ethics