Skip to main content

Fundamentals of Friction Stir Welding, Its Application, and Advancements

Part of the Materials Forming, Machining and Tribology book series (MFMT)

Abstract

In friction stir welding (FSW) the material is welded without melting the base material. Aerospace, automobile, shipbuilding and electronics are some of the industrial sectors which use FSW for manufacturing of components. It is primarily used because of higher weld efficiency as compared with fusion joining processes. In this book chapter, the fundamental aspects of the FSW have been briefly discussed. The chapter also discusses the effect of input responses on the output responses, application of FSW in various industries, research advances in welding of similar and dissimilar material using FSW. The FSW tool has two major features namely, the shoulder and pin, as its shape and dimensions govern the material flow behavior. In general, a cylindrical tool is used for FSW. Tool rotational speed, tilt angle, welding speed, and plunge depth are the input conditions which affect the dynamics of the process. Changes in these parameters have an effect on axial force, spindle torque, temperature distribution/heat generation and strain. In addition, it ultimately changes the microstructural, hardness and weld strength. The choice of the workpiece and tool material for FSW is another big challenge as it has its own limitations. Application of FSW started with welding of aluminum and magnesium and its alloy but eventually, it gained traction in welding high-density metals like copper, titanium and steel. Welding of these materials requires a hard tool material with the better thermomechanical property as compared to the workpiece to avoid premature tool wear/failure. FSW is not only limited to similar metal welding but research is going for welding of material in the dissimilar configuration like aluminum with copper, magnesium with aluminum, and steel with aluminum etc. The successful evolution of FSW has led to the emergence of a few new variants of this technology such as friction stir additive manufacturing, friction stir processing, friction stir spot welding, and micro FSW.

Keywords

  • Friction stir welding
  • Solid-state joining
  • Industrial application
  • Tool design

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kah P, Rajan R, Martikainen J, Suoranta R (2015) Investigation of weld defects in friction-stir welding and fusion welding of aluminium alloys. Int J Mech Mater Eng 10(1)

    Google Scholar 

  2. Rao SRK, Reddy GM, Rao KS, Kamaraj M, Rao KP (2005) Reasons for superior mechanical and corrosion properties of 2219 aluminum alloy electron beam welds. Mater Charact 55:345–354

    CrossRef  Google Scholar 

  3. Pastor M, Zhao H, Martukanitz RP, Debroy T. Porosity, Underfill and magnesium loss during continuous wave Nd :YAG laser welding of thin plates of aluminum alloys 5182 and 5754. Weld Res Suppl 207–216

    Google Scholar 

  4. Thomas CJ, Nicholas MW, Needham JC Murch MG, Templesmith P, Dawes CJ (1995) Friction stir butt welding. GB Patent Application 9125978.8, no. US Patent 5460317

    Google Scholar 

  5. Nicholas ED (2000) Friction stir welding Da decade on. In: IIW Asian Pacific international congress. Sydney

    Google Scholar 

  6. Dawes CJ, Thomas WM (1996) Friction stir welding for aluminum alloys. Weld 3(75):41–45

    Google Scholar 

  7. Threadgill PL, Leonard AJ, Shercliff HR, Withers PJ (2009) Friction stir welding of aluminium alloys. Int Mater Rev 54(2):49–93

    CrossRef  Google Scholar 

  8. Astarita A, Squillace A, Carrino L (2014) Experimental study of the forces acting on the tool in the friction-stir welding of AA 2024 T3 sheets. J Mater Eng Perform

    Google Scholar 

  9. Reynolds AP (2004) Visualisation of material flow in autogenous friction stir welds. Sci Technol Weld Join 5(2):120–124

    CrossRef  Google Scholar 

  10. Huang Y, Wang Y, Wan L, Liu H, Shen J (2016) Material-flow behavior during friction-stir welding of 6082-T6 aluminum alloy. Int J Adv Manuf Technol 1115–1123

    Google Scholar 

  11. Dickerson T, Shercliff HR (2015) A weld marker technique for flow visualization in FSW. In: 4th International symposium on friction stir welding

    Google Scholar 

  12. Colligan K (1999) Material flow behavior during friction stir welding of aluminum. Weld J (Miami, Fla) 78(7):229-s

    Google Scholar 

  13. Guerra M, Schmidt C, Mcclure JC, Murr LE, Nunes AC (2003) Flow patterns during friction stir welding. Mater Charact 49:95–101

    CrossRef  Google Scholar 

  14. Mishra RS, Mahoney MW, Sato Y, Hovanski Y (2016) Friction stir welding and processing VIII. Frict Stir Weld Process VIII 50:1–300

    Google Scholar 

  15. Khodaverdizadeh H, Heidarzadeh A, Saeid T (2013) Effect of tool pin profile on microstructure and mechanical properties of friction stir welded pure copper joints. Mater Des 45:265–270

    CrossRef  Google Scholar 

  16. Elangovan K, Balasubramanian V, Valliappan M (2008) Influences of tool pin profile and axial force on the formation of friction stir processing zone in AA6061 aluminium alloy. Int J Adv Manuf Technol 285–295

    Google Scholar 

  17. Kumar A, Biswas P (2017) Effect of tool pin profile on the material flow characteristics of AA6061. J Manuf Process 26:382–392

    CrossRef  MathSciNet  Google Scholar 

  18. Mohanty H, Mahapatra MM, Kumar P (2012) Study on the effect of tool profiles on temperature distribution and material flow characteristics in friction stir welding. Inst Mech Eng 226(9):1527–1535

    CrossRef  Google Scholar 

  19. Kumar K, Pancholi V, Bharti RP (2018) Material flow visualization and determination of strain rate during friction stir welding. J Mater Process Tech 255(July 2017):470–476

    Google Scholar 

  20. Jain R, Pal SK, Singh SB (2018) Finite element simulation of pin shape influence on material flow, forces in friction stir welding. Int J Adv Manuf Technol 1781–1797

    Google Scholar 

  21. Pourahmad P, Abbasi M (2013) Materials flow and phase transformation in friction stir welding of Al 6013/Mg. Trans Nonferrous Met Soc China 23(5):1253–1261

    CrossRef  Google Scholar 

  22. Sadeghian B, Taherizadeh A, Atapour M (2018) Simulation of weld morphology during friction stir welding of aluminum-stainless steel joint. Elsevier B.V.

    Google Scholar 

  23. Jain R, Pal SK, Singh SB (2016) A study on the variation of forces and temperature in a friction stir welding process: a finite element approach. J Manuf Process 23:278–286

    CrossRef  Google Scholar 

  24. Buffa G, Donati L, Fratini L, Tomesani L (2006) Solid state bonding in extrusion and FSW: process mechanics and analogies. J Mater Process Technol 177:344–347

    CrossRef  Google Scholar 

  25. CL, Yajie Li ZW, Qin F (2016) Effects of friction stir welding on microstructure and mechanical properties of magnesium alloy Mg–5Al–3Sn. Metals (Basel) 110:266–274

    Google Scholar 

  26. Ouyang J, Yarrapareddy E, Kovacevic R (2006) Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. J Mater Process Technol 172(1):110–122

    CrossRef  Google Scholar 

  27. Zhao Y, Lin S, Qu F, Wu L (2006) Influence of pin geometry on material flow in friction stir welding process. Mater Sci Technol

    Google Scholar 

  28. Yuqing M, Liming K, Fencheng L, Yuhua C, Li X (2016) Effect of tool pin-tip profiles on material flow and mechanical properties of friction stir welding thick AA7075-T6 alloy joints. Int J Adv Manuf Technol

    Google Scholar 

  29. Heidarzadeh A, Jabbari M, Esmaily M (2015) Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model. Int J Adv Manuf Technol 1819–1829

    Google Scholar 

  30. Prangnell PB, Heason CP (2005) Grain structure formation during friction stir welding observed by the ‘stop action technique.’ Acta Mater 53:3179–3192

    CrossRef  Google Scholar 

  31. Nicholas ED (1998) Developments in the friction-stir welding of metals. In: ICAA-6 6th international conference on aluminum alloy. Japan

    Google Scholar 

  32. Rai R, Bhadeshia HKDH, Debroy T (2011) Review: friction stir welding tools. Sci Technol Weld Join 16(4):325–342

    CrossRef  Google Scholar 

  33. Zhang YN, Cao X, Larose S, Wanjara P (2012) Review of tools for friction stir welding and processing. Can Metall Q 51(3):250–261

    CrossRef  Google Scholar 

  34. Mohanty HK, Mahapatra MM, Kumar P, Biswas P, Mandal NR (2012) Effect of tool shoulder and pin probe profiles on friction stirred aluminum welds—A comparative study. J Mar Sci Appl 11:200–207

    CrossRef  Google Scholar 

  35. He X, Gu F, Ball A (2014) A review of numerical analysis of friction stir welding. Prog Mater Sci 65:1–66

    CrossRef  Google Scholar 

  36. Emamian S, Awang M, Yusof F (2017) A review of friction stir welding pin pro file. Awang M (ed) In: 2nd International conference on mechanical, manufacturing and process plant engineering. Springer, Singapore.

    Google Scholar 

  37. Trimble D, Donnell GEO, Monaghan J (2014) Characterisation of tool shape and rotational speed for increased speed during friction stir welding of AA2024-T3. J Manuf Process

    Google Scholar 

  38. Liu FC, Ma ZY (2008) Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy. Miner Met Mater Soc ASM Int

    Google Scholar 

  39. Nandan R, Debroy T, Bhadeshia HKDH (2008) Recent advances in friction-stir welding—Process, weldment structure and properties. Prog Mater Sci 53:980–1023

    CrossRef  Google Scholar 

  40. Prado HF, Murr RA, Shindo LE, Soto DJ (2001) Tool wear in the friction stir welding of aluminium alloy 6061+20% Al2O3: a preliminary study. Scr Mater 75–80

    Google Scholar 

  41. Sahlot P, Jha K, Dey GK, Arora A (2017) Quantitative wear analysis of H13 steel tool during friction stir welding of Cu-0.8%Cr-0.1%Zr alloy. Wear 378–379:82–89

    CrossRef  Google Scholar 

  42. Thompson B (2011) Tungsten-based tool material development for the friction stir welding of hard metals. Miner Met Mater Soc 1–8

    Google Scholar 

  43. Cui L, Zhang C, Liu X, Li DWH (2018) Recent progress in friction stir welding tools used for steels. J Iron Steel Res Int 25(5):477–486

    CrossRef  Google Scholar 

  44. Elangovan K, Balasubramanian V (2007) Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy. Mater Sci Eng A 459:7–18

    CrossRef  Google Scholar 

  45. Elangovan K, Balasubramanian V (2007) Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. J Mater Process Technol 163–175

    Google Scholar 

  46. Soundararajan V, Zekovic S, Kovacevic R (2005) Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061. Int J Mach Tools Manuf 45:1577–1587

    CrossRef  Google Scholar 

  47. Jha K, Kumar S, Nachiket K, Bhanumurthy K, Dey GK (2018) Friction stir welding (FSW) of aged CuCrZr alloy plates. Metall Mater Trans A Phys Metall Mater Sci 49(1):223–234

    Google Scholar 

  48. Shen JJ, Liu HJ, Cui F (2010) Effect of welding speed on microstructure and mechanical properties of friction stir welded copper. Mater Des 31(8):3937–3942

    CrossRef  Google Scholar 

  49. FX, Youqing Sun RL, He D (2018) Effect of tool rotational speeds on the microstructure and mechanical properties of a dissimilar. Metals (Basel)

    Google Scholar 

  50. Devanathan C, Babu AS (2014) Effect of plunge depth on friction stir welding of Al 6063. In: 2nd International conference on advanced materials and modern manufacturing automation. March 2013

    Google Scholar 

  51. Ramulu PJ, Narayanan RG (2013) Forming limit investigation of friction stir welded sheets: influence of shoulder diameter and plunge depth. Int J Adv Manuf Technol 2757–2772

    Google Scholar 

  52. Zheng Q, Feng X, Shen Y, Huang G, Zhao P (2016) Effect of plunge depth on microstructure and mechanical properties of FSW lap joint between aluminum alloy and nickel-base alloy. J Alloys Compd

    Google Scholar 

  53. Seighalani KR, Givi MKB, Nasiri AM, Bahemmat P (2010) Investigations on the effects of the tool material, geometry, and tilt angle on friction stir welding of pure titanium. J Mater Eng Perform 19(October):955–962

    CrossRef  Google Scholar 

  54. Kumar K, Kailas SV (2008) The role of friction stir welding tool on material flow and weld formation. Mater Sci Eng A 485:367–374

    CrossRef  Google Scholar 

  55. Zhang S, Shi Q, Liu Q, Xie R, Zhang G, Chen G (2018) Effects of tool tilt angle on the in-process heat transfer and mass transfer during friction stir welding. Int J Heat Mass Transf 125:32–42

    CrossRef  Google Scholar 

  56. Dialami N, Cervera M, Chiumenti M (2019) Effect of the tool tilt angle on the heat generation and the material flow in friction stir welding. Metals (Basel)

    Google Scholar 

  57. Chauhan P, Jain R, Pal SK, Singh SB (2018) Modeling of defects in friction stir welding using coupled Eulerian and Lagrangian method. J Manuf Process 34(November 2017):158–166

    Google Scholar 

  58. Mehta KP, Badheka VJ (2014) Materials and manufacturing processes effects of tilt angle on properties of dissimilar friction stir welding copper to aluminum. Mater Manuf Process January 2015:37–41

    Google Scholar 

  59. Sorger G, Sarikka T, Vilaça P, Santos TG (2018) Effect of processing temperatures on the properties of a high-strength steel welded by FSW. Weld World 62:1173–1185

    CrossRef  Google Scholar 

  60. Yau YH, Hussain A, Lalwani RK, Chan HK, Hakimi N (2013) Temperature distribution study during the friction stir welding process of Al2024-T3 aluminum alloy. Int J Miner Metall Mater 20(8):779–787

    CrossRef  Google Scholar 

  61. Tang W, Guo X, McClure JC, Murr LE, Nunes A (1998) Heat input and temperature distribution in friction stir welding. J Mater Process Manuf Sci 7(2):163–172

    CrossRef  Google Scholar 

  62. Ramanjaneyulu K, Madhusudhan Reddy G, Venugopal Rao A (2014) Role of tool shoulder diameter in friction stir welding: an analysis of the temperature and plastic deformation of AA 2014 aluminium alloy. Trans Indian Inst Met 67(5):769–780

    Google Scholar 

  63. Fehrenbacher A, Schmale JR, Zinn MR, Pfefferl FE (2014) Measurement of tool-workpiece interface temperature distribution in friction stir weiding. J Manuf Sci Eng 136

    Google Scholar 

  64. Fehrenbacher A, Duffie NA, Ferrier NJ, Pfefferkorn FE, Zinn MR (2014) Effects of tool—workpiece interface temperature on weld quality and quality improvements through temperature control in friction stir welding. Int J Adv Manuf Technol 165–179

    Google Scholar 

  65. Ozturk F, Jarrar F, Evis Z (2016) Thermal history and microstructure during friction stir welding of Al–Mg alloy. Int J Adv Manuf Technol 1071–1081

    Google Scholar 

  66. Chao YJ, Qi X, Tang W (2003) Heat transfer in friction stir welding—Experimental and numerical studies. Trans ASME 125(February 2003):138–145

    Google Scholar 

  67. Zuo L, Zuo D, Zhu Y, Wang H (2018) Effect of process parameters on surface topography of friction stir welding. Int J Adv Manuf Technol 98(5–8):1807–1816

    CrossRef  Google Scholar 

  68. Su H, Wu CS, Pittner A Rethmeier M (2014) Thermal energy generation and distribution in friction stir welding of aluminum alloys. Energy 1–12

    Google Scholar 

  69. Buglioni L, Tufaro LN, Svoboda HG (2015) Thermal cycles and residual stresses in FSW of aluminum alloys: experimental measurements and numerical models. Procedia Mater Sci 9:87–96

    CrossRef  Google Scholar 

  70. Zybin I, Trukhanov K, Tsarkov A, Kheylo S (2018) Backing plate effect on temperature controlled FSW process. In: MATEC web conference, vol 01084

    Google Scholar 

  71. Hwang Y, Kang Z, Chiou Y, Hsu H (2008) Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys. Int. J. Mach. Tools Manuf. 48:778–787

    CrossRef  Google Scholar 

  72. Zhu R, Gong W, Cui H (2020) Temperature evolution, microstructure, and properties of friction stir welded ultra-thick 6082 aluminum alloy joints. Int J Adv Manuf Technol 331–343

    Google Scholar 

  73. Khandkar MZH, Khan JA, Reynolds AP. Prediction of temperature distribution and thermal history during friction stir welding : input torque based model. Sci Technol Weld Join 165–174.

    Google Scholar 

  74. Silva ACF, De Backer J, Bolmsjö G (2017) Temperature measurements during friction stir welding. Int J Adv Manuf Technol 2899–2908

    Google Scholar 

  75. Shahi P, Barmouz M, Asadi P (2014) Force and torque in friction stir welding. Adv Frict Stir Weld Process 459–498

    Google Scholar 

  76. Trimble D, Monaghan J, O’Donnell GE (2012) Force generation during friction stir welding of AA2024-T3. CIRP Ann-Manuf Technol 61(1):9–12

    CrossRef  Google Scholar 

  77. Grujicic M, Ramaswami S, Snipes JS, Avuthu V, Galgalikar R, Zhang Z (2015) Prediction of the grain-microstructure evolution within a friction stir welding (FSW) joint via the use of the Monte Carlo simulation method. J Mater Eng Perform

    Google Scholar 

  78. Baghdadi A, Sajuri Z, Kokabi AH (2018) Weldability and mechanical properties of dissimilar Al–MgSi to pure aluminium and Al–Mg using friction stir welding process. J Teknol Weld

    Google Scholar 

  79. Ruzek R, Kadlec M (2016) Friction stir welded structures : kissing bond defects Friction stir welded structures : kissing bond defects. Int J Terrasp Sci Eng

    Google Scholar 

  80. Al-Moussawi M, Smith AJ (2018) Defects in friction stir welding of steel. Metallogr Microstruct Anal 7(2):194–202

    CrossRef  Google Scholar 

  81. Zaman N, Noor A, Khan ZA, Shihab SK (2015) Investigations on tunneling and kissing bond defects in FSW joints for dissimilar aluminum alloys. J Alloys Compd 648:360–367

    CrossRef  Google Scholar 

  82. Zhao Y, Han J, Domblesky JP, Yang Z, Li Z (2019) Investigation of void formation in friction stir welding of 7N01 aluminum alloy. J Manuf Process 37(September 2018):139–149

    Google Scholar 

  83. Arora KS, Pandey S, Schaper M, Kumar R (2010) Microstructure evolution during friction stir welding of aluminum alloy AA2219. J Mater Sci Technol 26(8):747–753

    CrossRef  Google Scholar 

  84. Zhou L et al (2017) Effect of rotation speed on microstructure and mechanical properties of self-reacting friction stir welded Al–Mg–Si alloy. Int J Adv Manuf Technol 89(9–12):3509–3516

    CrossRef  Google Scholar 

  85. Zhao S, Bi Q, Wang Y, Shi J (2017) Empirical modeling for the effects of welding factors on tensile properties of bobbin tool friction stir-welded 2219-T87 aluminum alloy. Int J Adv Manuf Technol 90(1–4):1105–1118

    CrossRef  Google Scholar 

  86. Schneider J, Chen P, Nunes AC Jr (2019) Entrapped oxide formation in the friction stir weld (FSW) process. Metall Mater Trans A 50(1):257–270

    Google Scholar 

  87. Khodaverdizadeh H, Mahmoudi A, Heidarzadeh A, Nazari E (2012) Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints. Mater Des 35:330–334

    CrossRef  Google Scholar 

  88. Tufaro LN, Manzoni I, Svoboda HG (2015) Effect of heat input on AA5052 friction stir welds characteristics. Procedia Mater Sci 8:914–923

    CrossRef  Google Scholar 

  89. Buffa G, Fratini L, Shivpuri R (2007) CDRX modelling in friction stir welding of AA7075-T6 aluminum alloy: analytical approaches. J Mater Process Technol 191:356–359

    CrossRef  Google Scholar 

  90. Midling O (1998) Friction stir welding aluminium—Process and applications. In: 7th INA conference, Cambridge

    Google Scholar 

  91. Polt W. A little friction at Boeing. In: Boeing Front. Online, vol 3, issue 5

    Google Scholar 

  92. Shtrikman MM (2008) Current state and development of friction stir welding Part 3. Industrial application of friction stir welding. Weld Int 22(11):806–815

    CrossRef  Google Scholar 

  93. Landmann P. Ariane 5 cryogenic tank production. Sci. Photo Libr

    Google Scholar 

  94. Talwar JBR, Bolser D, Lederich R (2000) Friction stir welding of airframe structures. In: 2nd international symposium. FSW. Gothenbg

    Google Scholar 

  95. First weld of orion exploration Mission-1 crew module. NASA/Radislav Sinyak

    Google Scholar 

  96. Gatwick Technologies special joining and forming processes. FSW Mach Distribution Co.

    Google Scholar 

  97. Kallee SW, Nicholas ED, Thomas WM. Indusrtialization of friction stir welding for aerospace structures. TWI Ltd., Cambridge, UK

    Google Scholar 

  98. Sherherd G (2003) The evaluation of friction stir welded joints on airbus aircraft wing structure. In: 4th International symposium on friction stir welding. Utah (USA)

    Google Scholar 

  99. Higgins S, Christner B, McCoury J (2003) Development and testing of friction stir welding as a joining method for primary aircraft structure. In: 4th International symposium on friction stir Welding. Utah, 2003.

    Google Scholar 

  100. Paradiso V, Rubino F, Carlone P, Palazzo GS (2017) Magnesium and aluminium alloys dissimilar joining by friction stir welding. Procedia Eng 183:239–244

    CrossRef  Google Scholar 

  101. Neil WC, Forsyth M, Howlett PC, Hutchinson CR, Hinton BRW (2009) Corrosion of magnesium alloy ZE41—The role of microstructural features. Corros Sci 51(2):387–394

    CrossRef  Google Scholar 

  102. Haghshenas M, Gerlich AP (2018) Joining of automotive sheet materials by friction-based welding methods: a review. Eng Sci Technol Int J 21(1):130–148

    Google Scholar 

  103. Research areas in space by ISRO. AI, respond office capacity building program. ISRO HQ, Bengaluru

    Google Scholar 

  104. Thomas WM, Kallee SW, Staines DG, Oakley PJ (2006) Friction stir welding—Process variants and developments in the automotive industry (TWI Ltd.) In:SAE world congress. Cobo Center, Detroit, Michigan, USA

    Google Scholar 

  105. Toros S, Ozturk F, Kacar I (2008) Review of warm forming of aluminum—magnesium alloys. J. Mater Process Technol 7:1–12

    CrossRef  Google Scholar 

  106. Miller WS et al (2000) Recent development in aluminium alloys for the automotive industry. Mater Sci Eng A280

    Google Scholar 

  107. Kallee SW. Industrial applications of friction stir welding. Woodhead Publishing Limited

    Google Scholar 

  108. Oma S, Midling OT, Kvale JS (2000) Application of prefabricated friction stir welded panels in catamaran building. In: 4th International forum aluminum ships. New Orleans

    Google Scholar 

  109. Kallee SW, Davenport J, Nicholas ED (2002) Railway manufacturers implement friction stir welding. Weld 81:47–50

    Google Scholar 

  110. Bakar SSSA, Sharif S, Faridh M (2019) Assessment of friction stir welding on aluminium 3D printing materials. Int J Recent Technol Eng 4:10975–10980

    Google Scholar 

  111. Ribton CN, Andrews RE (2001) Canister sealing for high level encapsulation TWI Ltd. In: International high-level radioactive waste management conference, Las Vegas, Nevada, USA, 29 Apr–3 May 2001

    Google Scholar 

  112. Deqing W, Shuhua LIU (2004) Study of friction stir welding of aluminum. J Mater Sci 9:1689–1693

    CrossRef  Google Scholar 

  113. Hou JC, Liu HJ, Zhao YQ (2014) Influences of rotation speed on microstructures and mechanical properties of 6061-T6 aluminum alloy joints fabricated by self-reacting friction stir welding tool. Int J Adv Manuf Technol 1073–1079

    Google Scholar 

  114. Liu H, Zhang H, Pan Q, Yu L (2012) Effect of friction stir welding parameters on microstructural characteristics and mechanical properties of 2219-T6 aluminum alloy joints. Int J Mater Form 235–241

    Google Scholar 

  115. Marzbanrad J, Akbari M, Asadi P, Safaee S (2014) Characterization of the influence of tool pin profile on microstructural and mechanical properties of friction stir welding

    Google Scholar 

  116. Mohammadi-pour M, Khodabandeh A (2016) Microstructure and mechanical properties of joints welded by friction-stir welding in aluminum alloy 7075-T6 plates for aerospace application. Rare Met

    Google Scholar 

  117. Jamalian HM, Farahani M (2016) Study on the effects of friction stir welding process parameters on the microstructure and mechanical properties of 5086-H34 aluminum welded joints. Int J Adv Manuf Technol 611–621

    Google Scholar 

  118. Saravanan V, Rajakumar S, Banerjee N, Amuthakkannan R (2016) Effect of shoulder diameter to pin diameter ratio on microstructure and mechanical properties of dissimilar friction stir welded AA2024-T6 and AA7075-T6 aluminum alloy joints. Int J Adv Manuf Technol 3637–3645

    Google Scholar 

  119. Grujicic M et al (2012) Computational analysis of material flow during friction stir welding of AA5059 aluminum alloys. J Mater Eng Perform 21(September):1824–1840

    CrossRef  Google Scholar 

  120. Zhang HWZ, Chen JT, Zhang ZW (2011) Coupled thermo-mechanical model based comparison of friction stir welding processes of AA2024-T3 in different thicknesses. J Mater Sci 5815–5821

    Google Scholar 

  121. Buffa G, Hua J, Shivpuri R, Fratini L (2006) Design of the friction stir welding tool using the continuum based FEM model. Mater Sci Eng A 419:381–388

    CrossRef  Google Scholar 

  122. Ebrahimi M, Par MA (2019) Twenty-year uninterrupted endeavor of friction stir processing by focusing on copper and its alloys. J Alloys Compd 781:1074–1090

    CrossRef  Google Scholar 

  123. Guan W, Shen Y, Yan Y, Guo R, Zhang W (2018) Fabrication of ultra-thin copper foil pressure welding using FSW equipment. J Mater Process Tech 251(February 2017):343–349

    Google Scholar 

  124. Lee WB, Jung SB (2004) The joint properties of copper by friction stir welding. Mater Lett 58(6):1041–1046

    CrossRef  Google Scholar 

  125. Hwang YM, Fan PL, Lin CH (2010) Experimental study on friction stir welding of copper metals. J Mater Process Technol 210(12):1667–1672

    CrossRef  Google Scholar 

  126. Heidarzadeh A, Saeid T (2013) Prediction of mechanical properties in friction stir welds of pure copper. Mater Des 52:1077–1087

    CrossRef  Google Scholar 

  127. Sahlot P, Kumar A, Vishvesh S, Amit JB (2019) Friction stir welding of copper: numerical modeling and validation. Trans Indian Inst Met 72(5):1339–1347

    CrossRef  Google Scholar 

  128. Singh K, Singh G, Singh H (2018) Review on friction stir welding of magnesium alloys. J Magnes Alloy 000:1–18

    Google Scholar 

  129. Pan F, Xu A, Ye J, Tang A, Jiang X, Ran Y (2017) Effects of rotation rate on microstructure and mechanical properties of friction stir-welded Mg–5Al–1Sn magnesium alloy. Int J Adv Manuf Technol 389–397

    Google Scholar 

  130. Pareek M et al (2007) Metallurgical evaluation of AZ31B-H24 magnesium alloy friction stir welds. J Mater Eng Perform 16(October):655–662

    CrossRef  Google Scholar 

  131. Wang W, Deng D, Mao Z, Tong Y, Ran Y (2017) Influence of tool rotation rates on temperature profiles and mechanical properties of friction stir welded AZ31 magnesium alloy. Int J Adv Manuf Technol 174:2191–2200

    CrossRef  Google Scholar 

  132. Forcellese A, Martarelli M, Simoncini M (2016) Effect of process parameters on vertical forces and temperatures developed during friction stir welding of magnesium alloys. Int J Adv Manuf Technol 595–604

    Google Scholar 

  133. Mironov S, Sato YS Kokawa H. Influence of welding temperature on material flow during friction stir welding of AZ31 magnesium alloy. Metall Mater Trans A 50(6):2798–2806

    Google Scholar 

  134. Asadi P, Kazem M, Givi B Akbari M (2015) Simulation of dynamic recrystallization process during friction stir welding of AZ91 magnesium alloy

    Google Scholar 

  135. Richmire S, Sharifi P Haghshenas M (2018) On microstructure, hardness, and fatigue properties of friction stir-welded AM60 cast magnesium alloy. Int J Adv Manuf Technol 2157–2172,

    Google Scholar 

  136. Dinda GP, Ramakrishnan A (2019) Friction stir welding of high-strength steel. Int J. Adv Manuf Technol 4763–4769

    Google Scholar 

  137. Li S, Yang X (2019) Microstructural characteristics and mechanical properties of friction-stir-welded modified 9Cr–1Mo steel. J Mater Sci 54(8):6632–6650

    CrossRef  Google Scholar 

  138. Avinish Tiwari AG, Pankaj P, Biswas P, Kore SD (2019) Tool performance evaluation of friction stir welded shipbuilding grade DH36 steel butt joints. Int J Adv Manuf Technol 1989–2005

    Google Scholar 

  139. Kapil Gangwar MR (2017) Friction stir welding of titanium alloys: A review. Mater Des

    Google Scholar 

  140. Gianluca Buffa LS, Fratini L, Micari F (2020) On the choice of tool material in friction stir welding of titanium alloys. In: Proceedings of NAMRI/SME, vol 40

    Google Scholar 

  141. Sanders DG, Edwards P, Cantrell AM Gangwar K (2015) Friction stir-welded titanium alloy Ti–6Al–4V : microstructure, mechanical and fracture properties. Miner Met Mater Soc 67(5)

    Google Scholar 

  142. Lauro A (2012) Friction stir welding of titanium alloys. Weld Int December 2014:37–41

    Google Scholar 

  143. Sinha VC, Kundu S, Chatterjee S (2016) Microstructure and mechanical properties of similar and dissimilar joints of aluminium alloy and pure copper by friction stir welding. Perspect Sci 8:543–546

    CrossRef  Google Scholar 

  144. Li XW, Zhang DT, Qiu C, Zhang W (2012) Microstructure and mechanical properties of dissimilar pure copper/1350 aluminum alloy butt joints by friction stir welding. Trans Nonferrous Met Soc China (English Ed.) 22(6):1298–1306

    Google Scholar 

  145. Carlone P, Astarita A, Palazzo GS, Paradiso V, Squillace A (2015) Microstructural aspects in Al–Cu dissimilar joining by FSW. Int J Adv Manuf Technol 1109–1116

    Google Scholar 

  146. Bakhtiari F, Ali A, Seyyed S, Mirsalehi E (2018) Dissimilar joining of pure copper to aluminum alloy via friction stir welding. Acta Metall Sin (English Lett) 31(11):1183–1196

    Google Scholar 

  147. Akinlabi ET (2012) Effect of shoulder size on weld properties of dissimilar metal friction stir welds. J Mater Eng Perform 21(July):1514–1519

    CrossRef  Google Scholar 

  148. Shah LH, Othman NH, Gerlich A (2017) Review of research progress on aluminium–magnesium dissimilar friction stir welding. Sci Technol Weld. Join 1718(August)

    Google Scholar 

  149. Vahid Firouzdor SK (2010) Al-to-Mg friction stir welding : effect of material position, travel speed, and rotation speed. Miner Met Mater Soc ASM Int

    Google Scholar 

  150. Zhao Y, Jiang S, Yang S, Lu Z, Yan K (2016) Influence of cooling conditions on joint properties and microstructures of aluminum and magnesium dissimilar alloys by friction stir welding. Int J Adv Manuf Technol 673–679

    Google Scholar 

  151. Somasekharan LEMAC Characterization of complex, solid-state flow and mixing in the friction-stir welding (FSW) of aluminum alloy 6061-T6 to magnesium alloy AZ91D using color metallography. J Mater Sci 5365–5370

    Google Scholar 

  152. Sato YS, Park SHC, Michiuchi M, Kokawa H (2004) Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys. Scr Mater 50:1233–1236

    CrossRef  Google Scholar 

  153. Tanaka T, Masayuki Nezu TH, Uchida S (2020) Corrosion mechanism of intermetallic compound formation during the dissimilar friction stir welding of aluminum and steel. J Mater Sci 55(7) 3064–3072

    Google Scholar 

  154. Chen T (2009) Process parameters study on FSW joint of dissimilar metals for aluminum–steel. J Mater Sci 2573–2580

    Google Scholar 

  155. Derazkola HA, Khodabakhshi F (2019) Underwater submerged dissimilar friction-stir welding of AA5083 aluminum alloy and A441 AISI steel. Int J Adv Manuf Technol 4383–4395

    Google Scholar 

  156. Habibnia M, Shakeri M, Nourouzi S (2015) Microstructural and mechanical properties of friction stir welded 5050 Al alloy and 304 stainless steel plates. Int J Adv Manuf Technol 819–829

    Google Scholar 

  157. Karakizis PN, Pantelis DI, Dragatogiannis DA, Bougiouri VD, Charitidis CA (2019) Study of friction stir butt welding between thin plates of AA5754 and mild steel for automotive applications. Int J Adv Manuf Technol 3065–3076

    Google Scholar 

  158. Lan S, Liu X, Ni J (2016) Microstructural evolution during friction stir welding of dissimilar aluminum alloy to advanced high-strength steel. Int J Adv Manuf Technol 2183–2193

    Google Scholar 

  159. Yazdipour A, Heidarzadeh A (2016) Dissimilar butt friction stir welding of Al 5083-H321 and 316L stainless steel alloys. Int J Adv Manuf Technol 3105–3112

    Google Scholar 

  160. Ma Z, Li Q, Ma L, Hu W, Xu B (2019) Process parameters optimization of friction stir welding of 6005A–T6 aluminum alloy using taguchi technique. Trans Ind Inst Met 72:1721–1731

    CrossRef  Google Scholar 

  161. Arora A, Mehta M, Debroy T (2012) Load bearing capacity of tool pin during friction stir welding. 911–920

    Google Scholar 

  162. Sorensen CD, Stahl AL (2007) Experimental measurements of load distributions on friction stir weld pin tools. Miner Met Mater Soc ASM Int 38(June):451–459

    Google Scholar 

  163. Cemal Meran OEC (2011) The effects of tool rotation speed and traverse speed on friction stir welding of AISI 304 austenitic stainless steel. Int J Mat Res 102

    Google Scholar 

  164. Park SHC, Sato YS, Kokawa H (2009) Boride formation induced by pcBN tool wear in friction-stir-welded stainless steels. Miner Met Mater Soc ASM Int 40(March)

    Google Scholar 

  165. Barnes SJ, Bhatti AR, Steuwer A, Johnson R, Altenkirch J (2012) Friction stir welding in HSLA-65 steel : Part I. Influence of weld speed and tool material on microstructural development. Miner Met Mater Soc ASM Int

    Google Scholar 

  166. Wang J, Su J, Mishra RS, Xu R, Baumann JA (2014) Tool wear mechanisms in friction stir welding of Ti–6Al–4V alloy. Wear

    Google Scholar 

  167. Yusuf A, Iqbal Z, Al-badour FA, Gasem ZM (2018) Mechanical and tribological characterization of AlCrN coated spark plasma sintered W—25% Re–Hfc composite material for FSW tool. Integr Med Res 1–11

    Google Scholar 

  168. Adesina AY, Gasem ZM, Al-badour FA (2017) Characterization and evaluation of AlCrN coated FSW tool: a preliminary study. J Manuf Process 25:432–442

    CrossRef  Google Scholar 

  169. Siddiquee AN, Pandey S (2014) Experimental investigation on deformation and wear of WC tool during friction stir welding (FSW) of stainless steel. Int J Adv Manuf Technol 479–486

    Google Scholar 

  170. Kumar RA, Kumar RGA, Ahamed KA, Alstyn BD, Vignesh V (2019) ScienceDirect review of friction stir processing of aluminium alloys. Mater Today Proc 16:1048–1054

    CrossRef  Google Scholar 

  171. Boopathiraja KP, Ramamoorthi R, Vickram VVK, Yuvaraj KP (2020) Characterization and surface modification on composites by friction stir processing—A review. Mater Today Proc 1–

    Google Scholar 

  172. Reddy GM, Rao AS (2013) Friction stir processing for enhancement of wear resistance of ZM21 magnesium alloy. Trans Ind Inst Met 66(February):13–24

    CrossRef  Google Scholar 

  173. Ma ZY (2008) Friction stir processing technology : a review. Miner Met Mater Soc ASM Int

    Google Scholar 

  174. Yang XW, Fu T, Li WY (2014) Friction stir spot welding : a review on joint macro- and microstructure, property, and process modelling. Adv Mater Sci Eng

    Google Scholar 

  175. Mubiayi MP, Akinlabi ET (2016) Evolving properties of friction stir spot welds between AA1060 and commercially pure copper C11000. Trans Nonferrous Met Soc China 26(7):1852–1862

    CrossRef  Google Scholar 

  176. Wang S et al (2020) Strengthening and toughening mechanisms in refilled friction stir spot welding of AA2014 aluminum alloy reinforced by graphene nanosheets. Mater Des 186:108212

    CrossRef  Google Scholar 

  177. Sithole K, Rao VV (2016) Recent developments in micro friction stir welding: a review. Mater Sci Eng

    Google Scholar 

  178. Sen M, Shankar S, Chattopadhyaya S (2019) Micro-friction stir welding—A review. Mater Today Proc

    Google Scholar 

  179. Huang Y, Meng X, Zhang Y, Cao J, Feng J (2017) Micro friction stir welding of ultra-thin Al-6061 sheets. J Mater Process Tech

    Google Scholar 

  180. Huang Y, Meng X, Lv Z, Huang T, Zhang Y (2018) Microstructures and mechanical properties of micro friction stir welding of 6061-T4 aluminum alloy. J Mater Res Technol 1–8

    Google Scholar 

  181. Papaefthymiou S, Goulas C, Gavalas E (2014) Micro-friction stir welding of titan zinc sheets. J Mater Process Tech

    Google Scholar 

  182. Padhy GK, Wu CS, Gao S (2018) Friction stir based welding and processing technologies - processes, parameters, microstructures and applications: a review. J Mater Sci Technol 34:1–38

    CrossRef  Google Scholar 

  183. Palanivel S, Nelaturu P, Glass B, Mishra RS (2015) Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy. Mater Des 65:934–952

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choudhary, A.K., Jain, R. (2021). Fundamentals of Friction Stir Welding, Its Application, and Advancements. In: Davim, J.P. (eds) Welding Technology. Materials Forming, Machining and Tribology. Springer, Cham. https://doi.org/10.1007/978-3-030-63986-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63986-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63985-3

  • Online ISBN: 978-3-030-63986-0

  • eBook Packages: EngineeringEngineering (R0)