Skip to main content

Integration and Interpretation

  • Chapter
  • First Online:
Biogenic Sedimentary Rocks in a Cold, Cenozoic Ocean
  • 187 Accesses

Abstract

The Cenozoic successions are integrated and analyzed here with respect to the dominant controlling factors present during deposition, namely tectonics, oceanography, climate, and influence of Antarctica. Middle Eocene–early Oligocene SA2 biogenic shelf sediments accumulated during a time of at first warm, but then gradually cooling ocean waters under a relative quiescent tectonic regimen. The climate was mostly humid subtropical with extensive temperate rainforests and fluvial activity that gradually waned in the post-Eocene. It is interpreted that the prolific nutrient elements delivered from land during the Eocene promoted extensive neritic biosiliceous deposition. The Oligocene -Miocene SA3 carbonate shelf was similar to that of today under a progressively warming climate and ocean waters such that in the mid-Miocene sedimentation was nearly photozoan. The comparatively quiet AAG had evolved into the Southern Ocean by the Oligocene resulting in a much more active hydrodynamic marine system. Antarctica had become ice covered and glacioeustacy promoted extensive m-scale carbonate cyclicity. The Plio-Pleistocene SA4 shaved shelf developed because of active tectonism that is continuing today and resulted in a different sedimentary system dominated by marginal marine and slope carbonate deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abegg FE, Harris PM, Loope DB (eds) (2001) Modern and ancient carbonate eolianites: Sedimentology, sequence stratigraphy, and diagenesis. SEPM Special Publication 71. SEPM, Tulsa, OK, USA, p 207

    Google Scholar 

  • Abreu VS, Anderson JB (1998) Glacial eustasy during the Cenozoic; sequence stratigraphic implications. AAPG Bulletin 82:1385–1400

    Google Scholar 

  • Benbow MC (1990) Tertiary coastal dunes of the Eucla Basin. Australia Geomorphology 3:9–29

    Article  Google Scholar 

  • Benbow MC, Alley NF, Callen RA, Greenwood DR (1995a) Geologic History and Paleoclimate In: Drexel JF, Preiss VP (eds) The Geology of South Australia, The Phanerozoic. geological survey of South Australia, Bulletin 54, vol. 2, pp 208–217

    Google Scholar 

  • Benbow MC, Callen RA, Bourman RP, Alley NF (1995b) Deep weathering, ferricrete and silcrete. In: Drexel JF, Preiss VP (eds) The geology of South Australia, The phanerozoic geological survey of South Australia, Bulletin 54 vol. 2, pp 201–207

    Google Scholar 

  • Benbow MC, Lindsay JM, Alley NF (1995c) Eucla Basin and palaeodrainage. In: Drexel JF, Preiss VP (eds) The geology of South Australia, Volume 2 The Phanerozoic. Geological Survey of South Australia Bulletin, pp 178-186

    Google Scholar 

  • Berger WH, Wefer G (1996) Expeditions into the past: Paleoceanographic studies in the South Atlantic. In: Wefer G, Berger WH, Siedler G, Webb DJ (eds) The South Atlantic: Present and Past Circulation. Springer-Verlag, Berlin, pp 363–410

    Chapter  Google Scholar 

  • Betzler C, Brachert TC, Nebelsick J (1997) The warm temperate carbonate province: A review of facies, zonations and delineations. Courier Forschungsinstitut Senckenberg 201:83–99

    Google Scholar 

  • Bijl PK, Bendle JAP, Bohaty S, Pross J, Schouten S, Tauxe L, Stickey CE, McKay RM, Rohl U, Olney M, Sluijs A, Escutia C, Brinkhuis H, Scientists E (2013) Eocene cooling linked to early flow across the Tasmanian Gateway. PNAS 110:9645–9650

    Article  Google Scholar 

  • Bohaty S, Zachos JC (2003) Significant Southern Ocean warming event in the late middle Eocene. Geology 31:1017–1020

    Article  Google Scholar 

  • Boutakoff N (1963) The geology and geomorphology of the Portland area. Memoirs—Geological Survey of Victoria, Memoirs—Geological Survey of Victoria, Melbourne, p 171

    Google Scholar 

  • Bowler JM (1976) Aridity in Australia; age, origins and expression in aeolian landforms and sediments. Earth Sci Rev 12:279–310

    Article  Google Scholar 

  • Chaproniere GCH (1975) Palaeoecology of oligo-miocene larger foraminiferidas, Australia. Alcheringa 1:37–58

    Article  Google Scholar 

  • Chaproniere GCH (1984) Oligocene and miocene larger foraminiferida from Australia and New Zealand. Bureau of Mineral Resources Bulletin 188:1–98

    Google Scholar 

  • Clark PU, Archer D, Pollard D, Blum JD, Rial JA, Brovkin V, Mix AC, Pisias NG, Roy M (2006) The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quatern Sci Rev 23:3150–3184

    Article  Google Scholar 

  • Darragh TA (1985) Molluscan biogeography and biostratigraphy of the Tertiary of southern Australia. Alcheringa 9:83–116

    Article  Google Scholar 

  • DeConto R, Pollard D (2003) A coupled climate-ice sheet modeling approach to the Early Cenozoic history of the Antarctic ice sheet. Palaeogeogr Palaeoclimatol Palaeoecol 198:39–52

    Article  Google Scholar 

  • Dickinson JA, Wallace MW, Holdgate GR, Gallagher SJ, Thomas L (2002) Origin and Timing of the Miocene-Pliocene Unconformity in Southeast Australia. J Sediment Res 72:288–303

    Article  Google Scholar 

  • Exon NF, Kennett JP, Malone MJ, Exon NF, Kennett JP, Malone MJ, Brinkhuis H., Chaproniere GCH, Ennyu A, Fothergill P, Fuller MD, Grauert M, Hill PJ, Janecek TR, Kelly DC, Latimer JC, Nees S, Ninnemann US, Nuernberg D, Pekar SF, Pellaton CC, Pfuhl HA, Robert CM, Roessig KLM, Roehl U, Schellenberg SA, Shevenell AE, Stickley CE, Suzuki N, Touchard Y, Wei W, White TS, Ocean Drilling Program LSSPCSTXUS (2004) Leg 189 synthesis; Cretaceous-Holocene history of the Tasmanian gateway; Proceedings of the Ocean Drilling Program; scientific results; the Tasmanian gateway; Cenozoic climatic and oceanographic development; covering Leg 189 of the cruises of the drilling vessel JOIDES Resolution; Hobart, Tasmania, to Sydney, Australia; Sites 1168–1172; 11 March-6 May 2000. Proceedings of the Ocean Drilling Program, Scientific Results (CD-ROM) 189: 38

    Google Scholar 

  • Feary D, Hine AC, Malone M, et al (2000) Great Australian Bight: Cenozoic cool-water carbonates. Proceedings of the ocean drilling program, initial reports, 182. Proceedings of the Ocean Drilling Program, Initial Reports, College Station, Texas,  pp 58

    Google Scholar 

  • Feary DA, James NP (1995) Cenozoic biogenic mounds and buried Miocene (?) barrier reef on a predominantly cool-water carbonate continental margin—Eucla Basin, western Great Australian Bight. Geology 23:427–431

    Article  Google Scholar 

  • Flottmann T, James P (1997) Influence of basin architecture on the style of inversion and fold-thrust belt tectonics–the southern Adelaide Fold-Thrust Belt, South Australia. J Struct Geol 19:1093–1110

    Article  Google Scholar 

  • Flower BP, Kennett JP (1994) The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol 108:537–555

    Article  Google Scholar 

  • Francis JE, Marensi S, Levy R, Hambrey M, Thorn VC, Mohr B, Brinkhuis H, Warnaar J, Zachos JC, Bohaty S, DeConto R (2008) Chapter 8 From Greenhouse to Icehouse—The Eocene/Oligocene in Antarctica. Developments in Earth and Environmental Sciences. Elsevier, Amsterdam, pp 309–368

    Google Scholar 

  • Gallagher SJ, Jonasson K, Holdgate G (1999) Foraminiferal biofacies and paleoenvironmental evolution of an Oligo-Miocene cool-water carbonate succession in the Otway basin, Southeast Australia. Journal of Micropaleontology 18:143–168

    Article  Google Scholar 

  • Greenhalgh SA, Love D, Malpas K, McDougall R (1994) South Australian earthquakes, 1980-92. Aust J Earth Sci 41:483–495

    Article  Google Scholar 

  • Hill PJ, Exon NF (2004) Tectonics and Basin Development of the Offshore Tasmanian Area Incorporating Results from Deep Ocean Drilling. In: Exon NF, Kennett JP, Malone MJ (eds) The Cenozoic Southern Ocean: Tectonics, sedimentation, and climate change between Australia and Antarctica. American Geophysical Union, pp 19–42

    Google Scholar 

  • Hou B, Frakes LA, Alley NF, Gammon P, Clarke JDA (2003) Facies and Sequence stratigraphy of Eocene valley fills in Eocene palaeovalleys, the eastern Eucla Basin, South Australia. Sed Geol 163:111–130

    Article  Google Scholar 

  • Hou B, Frakes LA, Sandiford M, Worrall L, Keeling J, Alley NF (2008) Cenozoic Eucla Basin and associated palaeovalleys, southern Australia—climatic and tectonic influences on landscape evolution, sedimentation and heavy mineral accumulation. Sed Geol 203:112–130

    Article  Google Scholar 

  • Huber M (2006) The ocean circulation in the Southern Hemisphere and its climatic impacts in the Eocene. Palaeogeogr Palaeoclimatol Palaeoecol 231:9–28

    Article  Google Scholar 

  • Huber M, Brinkhuis H, Stickey CE, Doos K, Sluijs A, Warnaar J, Schellenberg SA, Williams GL (2004) Eocene circulation of the Southern Ocean: Was Antarctica kept warm by subtropical waters? Paleoceanography and Paleoclimatology 19:4–26

    Google Scholar 

  • James NP (1997) The cool-water carbonate depositional realm. In: James NP, Clarke MJ (eds) Cool-water carbonates. SEPM Special Publication, pp 1–20

    Google Scholar 

  • James NP, Bone Y (2011a) Carbonate sedimentation in a warm-temperate carbonate macroalgal depositional system, South Australia. Sed Geol 240:41–53

    Article  Google Scholar 

  • James NP, Bone Y (2011b) Neritic carbonate sediments in a temperate realm. Southern Australia, Springer, Dordrecht Heidelberg London New York, p 254

    Book  Google Scholar 

  • James NP, Bone Y (2015) Pleistocene aeolianites at Cape Spencer, South Australia; record of a vanished inner neritic cool-water carbonate factory. Sedimentology 62:2038–2059

    Article  Google Scholar 

  • James NP, Bone Y (2017) Provenance of Holocene calcareous beach-dune sediments, western Eyre Peninsula, Australia. Sed Geol 357:83–98

    Article  Google Scholar 

  • James NP, Bone Y, Collins LB, Kyser TK (2001) Surficial sediments of the Great Australian Bight; facies dynamics and oceanography on a vast cool-water carbonate shelf. J Sediment Res 71:549–567

    Article  Google Scholar 

  • James NP, Bone Y, Kyser TK (1991) Shallow burial dolomitization of mid-Cenozoic, cool-water, calcitic, deep-shelf limestones, southern Australia. AAPG Bulletin 75:602

    Google Scholar 

  • James NP, Boreen TD, Bone Y, Feary DA (1994) Holocene carbonate sedimentation on the West Eucla Shelf, Great Australian Bight; a shaved shelf. Sed Geol 90:161–177

    Article  Google Scholar 

  • James NP, Lukasik J (2010) Cool- and cold-water neritic carbonates. In: James NP, Dalrymple RW (eds) Facies Models 4. Geological Association of Canada GEOtext 6, pp 369–398

    Google Scholar 

  • Joury M, James NP, James C (2018) Nearshore cool-water carbonate sedimentation and provenance of Holocene calcareous dunes eastern South Australia. Aust J Earth Sci 65:221–242

    Article  Google Scholar 

  • Kämpf J, Doubell M, Griffin D, Matthews RL, Ward TM (2004) Evidence of a large seasonal coastal upwelling system along the southern shelf of Australia. Geophys Res Lett 31(L09310):09311–09314

    Google Scholar 

  • Lowry DC (1970) Geology of the Western Australian part of the Eucla Basin. Geological Survey of Western Australia Bulletin 122:201

    Google Scholar 

  • Lukasik J, James NP (2006) Carbonate sedimentation, climate change and stratigraphic completeness on a Miocene cool-water epeiric ramp, Murray Basin, South Australia. Geological Society Special Publications 255:217–244

    Article  Google Scholar 

  • Lukasik JJ, James NP, McGowran B, Bone Y (2000) An epeiric ramp; low-energy, cool-water carbonate facies in a Tertiary inland sea, Murray Basin, South Australia. Sedimentology 47:851–881

    Article  Google Scholar 

  • McClatchie S, Middleton JF, Ward TM (2006) Water mass analysis and alongshore variation in upwelling intensity in the eastern Great Australian Bight. J. Geophys. Res. 111

    Google Scholar 

  • McGowran B (1979) The Tertiary of Australia: Foraminiferal overview. Mar Micropaleontol 4:235–264

    Article  Google Scholar 

  • McGowran B (2009) The Australo-Antarctic Gulf and the Auversian facies shift. In: Koeberl C, Montanari A (eds) The late eocene Earth—Hothouse, Icehouse, and impacts. geological society of america special paper, pp 215–240

    Google Scholar 

  • McGowran B, Holdgate GR, Li Q, Gallagher SJ (2004) Cenozoic stratigraphic succession in southeastern Australia. Aust J Earth Sci 51:459–496

    Article  Google Scholar 

  • McGowran B, Li Q (1994) The Miocene oscillation in southern Australia. In: Pledge N S (ed) Australian vertebrate evolution. Palaeontology and systematics records of the South Australian Museum 27: 197–212

    Google Scholar 

  • McGowran B, Li Q, Moss G (1997) The Cenozoic neritic record in southern Australia: The biogeohistorical framework. In: James NP, Clarke JAD (eds) Cool-Water Carbonates. Special Publication—SEPM, pp 185–203

    Google Scholar 

  • McLaren S, Wallace MW (2010) Plio-Pleistocene climatic change and the onset of aridity in southeastern Australia. Global Planet Change 127:81–91

    Google Scholar 

  • Michel J, Borgomanoa J, Reijmer JJG (2018) Heterozoan carbonates: when, where and why? A synthesis on parameters controlling carbonate production and occurrences. Earth Sci Rev 182:50–67

    Article  Google Scholar 

  • Middleton JF, Bye JAT (2007) A review of the shelf-slope circulation along Australia’s Southern Shelves: Cape Leeuwin to Portland. Prog Oceanogr 75:1–41

    Article  Google Scholar 

  • Murray-Wallace CV (2002) Pleistocene coastal stratigraphy, sea-level highstands and neotectonism of the southern Australian passive continental margin; a review; Sea-level changes and neotectonics. JQS. Journal of Quaternary Science 17: 469–489

    Google Scholar 

  • Murray-Wallace CV (2018) Quaternary History of the Coorong Coastal Plain. Springer international publishing, Cham, Switzerland, Southern Australia, p 229

    Google Scholar 

  • Murray-Wallace CV, Belperio AP (1991) The last interglacial shoreline in Australia; a review. Quatern Sci Rev 10:441–461

    Article  Google Scholar 

  • Murray-Wallace CV, Belperio AP, Bourman RP, Cann JH, Price DM (1999) Facies architecture of a last interglacial barrier; a model for Quaternary barrier development from the Coorong to Mount Gambier coastal plain, southeastern Australia. Mar Geol 158:177–195

    Article  Google Scholar 

  • Murray-Wallace CV, Woodroffe CD (2014) Quaternary Sea Level Changes. Cambridge University Press, Cambridge, U.K, A Global Perspective, p 484

    Book  Google Scholar 

  • Nelson CS (Ed.), (1988) Non-tropical shelf carbonates-modern and ancient., 60. Sedimentary Geology, pp 367 

    Google Scholar 

  • O’Connell LG, James NP, Bone Y (2012) The Nullarbor Limestone, Southern Australia: A vast subtropical Miocene carbonate Platform. Sed Geol 253–254:1–16

    Article  Google Scholar 

  • Pagani M, Huber M, Liu Z, Bohaty S, Henderiks J, Sijp WP, Krishnan S, DeConto R (2011) The Role of Carbon Dioxide During the Onset of Antarctic Glaciation. Science 334: http://DOI10.1126.12390%2c12328p

    Google Scholar 

  • Pandolfi JM, Kelley R (2008) The Great Barrier Reef in time and Space: Geology and Paleontology. In: Hutchings PA, Kingsford MJ, Hoegh-Guldberg O (eds) The Great Barrier Reef: Biology, Environment and Management. CSIRO Publishing, Collingwood, Victoria, Australia, pp 17–27

    Google Scholar 

  • Price RC, Nicholls IA, Gray CM (2003) Cainozoic igneous activity. In: Birch WD (ed) Geology of Victoria. Geological Society of Australia, Special Publication 23, pp 362–375

    Google Scholar 

  • Quilty PG (1977) Cenozoic sedimentation cycles in Western Australia. Geology 5:336–340

    Article  Google Scholar 

  • Richardson LE, Middleton JF, James NP, Kyser TK, Opdyke BN (2019) Upwelling characteristics and nutrient enrichment of the Kangaroo Island upwelling region, South Australia. Continental Shelf Research 200: doi.org/10.1016/j.csr.2020.104111

  • Riordan NK, James NP, Bone Y (2012) Oligo-Miocene seagrass-influenced carbonate sedimentation along a temperate marine paleoarchipelago, Padthaway Ridge, South Australia. Sedimentology 59:393–418

    Article  Google Scholar 

  • Sandiford M (2003a) Geomorphic constraints on the late Neogene tectonics of the Otway Range, Victoria. Aust J Earth Sci 50:69–80

    Article  Google Scholar 

  • Sandiford M (2003b) Neotectonics of southeastern Australia; linking Quaternary faulting record with seismicity and in situ stress. In: Hillis RR, Muller RD (eds) Evolution and dynamics of the Australian Plate. Geological Society of Australia, Special Publication 22, pp 101–113

    Google Scholar 

  • Scher HD, Whittaker JM, Williams SE, Latimer JC, Kordesch WE, Delaney ML (2015) Onset of Antarctic circumpolar current 30 million years ago as Tasmanian Gateway aligned with westerlies. Nature Research Letters 523:580–583

    Article  Google Scholar 

  • Shackleton NJ, van Andel TH, Boyle EA, Jansen E, Labeyrie L, Leinen M, McKenzie J, Mayer L, Sundquist E (1990) Contributions from the oceanic record to the study of global change on three time scales; Report of Working Group I, Interlaken workshop for Past global changes. Global Planet Change 2:5–37

    Article  Google Scholar 

  • Sheard MJ (1986) Some volcanological observations at Mount Schank, southeast South Australia. Geological Survey of South Australia, Quarterly Geological Notes 100:14–20

    Google Scholar 

  • Sijp WP, England MH, Huber M (2011) Effect of the deepening of the Tasman Gateway on the global ocean. Paleoceanography and Paleoclimatology 26: doi.org/10.1029/2011PA002143

  • Sniderman JM, Woodhead JD, Hellstrom J, Jordan GJ, Drysdale RN, Tyler J, Porch N (2016) Pliocene reversal of late Neogene aridification. PNAS 113:1999–2004

    Article  Google Scholar 

  • Sprigg RC (1952) The geology of the South-East Province, South Australia, with special reference to Quaternary coast-line migrations and modern beach developments. Bulletin—Geological Survey of South Australia, 29. Geological Survey of South Australia, Adelaide, South Aust., 120 pp

    Google Scholar 

  • Stickley CE, Brinkhuis H, Schellenberg SA, Sluijs A, Rohl U, Fuller MK, Grauert M, Huber M, Warnaar J, Williams G. (2004) Timing and nature of the deepening of the Tasmanian Gateway Paleoceanography and Paleoclimatology 19: https://doi.org/10.1029/2004pa001022

  • Taylor G, Eggleton RA (2017) Silcrete: an Australian perspective. Aust J Earth Sci 64:987–1016

    Article  Google Scholar 

  • van Ruth PD, Patten NL, Doubell MJ, Chapman P, Rodriguez AR, Middleton JF (2018) Seasonal- and event-scale variations in upwelling, enrichment and primary productivity in the eastern Great Australian Bight. In: Begg G (ed) Great Australian Bight Research Program—a whole of system investigation. Elsevier, pp 36–45

    Google Scholar 

  • Veevers JJ (2000) Billion-year earth history of Australia and neighbours in Gondwanaland. Gemoc Press, Sydney, p 388

    Google Scholar 

  • Veevers JJ, Powell M, Roots SR (1991) Review of seafloor spreading around Australia, 1. Synthesis of patterns of spreading. Austalian Journal of Earth Sciences 38

    Google Scholar 

  • Wallace WW, Dickinson DJA, Moore DH, Sandiford M (2005) Late Neogene strandlines of southern Victoria: A unique record of eustasy and tectonics in southeast Australia. Aust J Earth Sci 52:279–297

    Article  Google Scholar 

  • White ME (1994) After The Greening. The Browning Of Australia. Kangaroo Press Pty, Ltd, Kentworth, NSW, Australia, p 288

    Google Scholar 

  • Williams MAJ (2001) Quaternary climatic changes in Australia and their environmental effects. In: Gostin VA(ed) Gondwana to greenhouse: Australian environmental geoscience. Geological society of Australia Inc., Special Publication No. 21, pp 3–11

    Google Scholar 

  • Zheng H, Wyrwoll K-H, Li Z, Powell CM (1998) Onset of aridity in southern Western Australia—a preliminary palaeomagnetic appraisal. Global Planet Change 18:175–187

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noel P. James .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

James, N.P., Bone, Y. (2021). Integration and Interpretation. In: Biogenic Sedimentary Rocks in a Cold, Cenozoic Ocean. Springer, Cham. https://doi.org/10.1007/978-3-030-63982-2_7

Download citation

Publish with us

Policies and ethics