Skip to main content
  • 213 Accesses

Abstract

As a result of late Miocene tectonics alteration occurred in two different settings, pre-uplift and post-uplift. Pre-uplift diagenesis during passive margin subsidence was largely characterized by seafloor carbonate dissolution, omission surface precipitation (hardgrounds) and burial alteration, there was no significant meteoric alteration. This latter aspect was largely due to the fact that there were few aragonitic components in the sediment and there was likely seafloor aragonite dissolution similar to that taking place today. Dolomite formation was present but only locally. By contrast, post-uplift diagenesis was typified by extensive meteoric alteration. Widespread karst, both surface and subsurface, formed in the uplifted and Pleistocene carbonates. The most impressive karst is that on and beneath the Nullarbor Plain. The semi-arid climate also led to extensive pedogenic carbonate in the form of calcrete. The exposed Pleistocene carbonates were rapidly cemented because of abundant aragonite particles that were quickly blown into aeolianites from the nearby offshore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandersson ET (1978) Destructive diagenesis of carbonate sediments in the eastern Skagerrak, North Sea. Geo 6:324–327

    Google Scholar 

  • Alexandersson ET (1979) Marine maceration of skeletal carbonates in the Skagerrak, North Sea. Sedimentol 26:845–852

    Article  Google Scholar 

  • Alonso-Zarza A, Esther Sanz M, Calvo JP, Estevez P (1998) Calcified root cells in Miocene pedogenic carbonates of the Madrid Basin; evidence for the origin of Microcodium b. Sed Geol 116:81–97

    Article  Google Scholar 

  • Alonso-Zarza AM (2003) Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth Sci Rev 60:261–298

    Article  Google Scholar 

  • Bathurst RGC (1975) Carbonate sediments and their diagenesis, Developments in Sedimentology. Elsevier Science, Amsterdam, pp. 658

    Google Scholar 

  • Benbow MC, Lindsay JM, Alley NF (1995) Eucla Basin and palaeodrainage. In: Drexel JF, Preiss VP (eds) The Geology of South Australia, vol 2 The Phanerozoic. Geological Survey of South Australia Bulletin, pp. 178–186

    Google Scholar 

  • Bone Y, James NP, Kyser TK (1992) Synsedimentary detrital dolomite in quaternary cool-water carbonate sediments, Lacepede shelf, South Australia. Geol 20:109–112

    Article  Google Scholar 

  • Burton EA, Walter LM (1987) Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control? Geol 15: 111–114

    Google Scholar 

  • Choquette PW, Pray LC (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. Am Asso Petrol Geol Bull 54:207–250

    Google Scholar 

  • Dunkley JR, Wigley TML (1967) Caves of the Nullarbor; a review of speleological investigations in the Nullarbor plain, southern Australia. Speleological Research Council, Sydney, Australia

    Google Scholar 

  • Esteban M, Klappa CF (1983) Subaerial exposure environment. In: Scholle PA, Bebout DG, Moore CH (eds) Carbonate depositional environments. American Association of Petroleum Geologists Memoir 33, Tulsa, OK, pp. 1–54

    Google Scholar 

  • Freiwald A (1995) Bacteria-induced carbonate degradation; a taphonomic case study of Cibicides lobatulus from a high-boreal carbonate setting. Palaios 10:337–346

    Article  Google Scholar 

  • Frisia S, Borsato A (2010) Karst. In: Alonso-Zarza A, Tanner LH (eds) Carbonates in continental settings: facies, environments and processes: developments in Sedimentology. Elsevier, Oxford, pp 269–318

    Chapter  Google Scholar 

  • Golubic S, Perkins RD, Lukas KJ (1975) Boring microorganisms and microborings in carbonate substrates. In: Frey RW (ed) The study of trace fossils. Springer-Verlag, New York, pp 229–259

    Chapter  Google Scholar 

  • Grimes KG (2006) Syngenetic karst in Australia: a review. Helectite 39:27–38

    Google Scholar 

  • James NP (1972) Holocene and Pleistocene calcareous crust (caliche) profiles: criteria for subaerial exposure. J Sediment Petrol 42:817–836

    Google Scholar 

  • James NP (1997) The cool-water carbonate depositional realm. In: James NP, Clarke MJ (eds) Cool-water carbonates. SEPM Special Publication, pp. 1–20

    Google Scholar 

  • James NP, Bone Y (1989) Petrogenesis of Cenozoic, temperate water calcarenites, South Australia: a model for meteoric/shallow burial diagenesis of shallow water calcite sediments. J Sediment Petrol 59:191–203

    Google Scholar 

  • James NP, Bone Y (1991) Sediment dynamics of an Oligo-Miocene cool water shelf limestone, Eucla Platform, southern Australia. Sedimentol 38:323–342

    Google Scholar 

  • James NP, Bone Y (1992) Synsedimentary cemented calcarenite layers in Oligo-Miocene cool-water shelf limestones, Eucla Platform, southern Australia. J Sediment Petrol 62:860–872

    Article  Google Scholar 

  • James NP, Bone Y (2011) Neritic carbonate sediments in a temperate realm, Southern Australia. Springer, Dordrecht Heidelberg London New York, p 254

    Book  Google Scholar 

  • James NP, Bone Y, Collins LB, Kyser TK (2001) Surficial sediments of the Great Australian Bight; facies dynamics and oceanography on a vast cool-water carbonate shelf. J Sediment Res 71:549–567

    Article  Google Scholar 

  • James NP, Bone Y, Joury M, Malcolm I, Kyser TK (2018) Diagenesis and compositional partitioning of quaternary cool-water carbonate aeolianites, Southeastern Australia. J Sediment Res 88:431–448

    Article  Google Scholar 

  • James NP, Bone Y, Kyser TK (1991) Shallow burial dolomitization of mid-Cenozoic, cool-water, calcitic, deep-shelf limestones, southern Australia. AAPG Bull 75:602

    Google Scholar 

  • James NP, Bone Y, Kyser TK (2005) Where has all the aragonite gone? Mineralogy of Holocene neritic cool-water carbonates, Southern Australia. J Sediment Res 75:454–463

    Article  Google Scholar 

  • James NP, Choquette PW (1990) Limestone—the meteoric diagenetic environment. In: McIlreath I, Morrow D (eds, Diagenesis. Geological Association of Canada Reprint Series 4, St. John’s, ND, Canada, pp. 35–74

    Google Scholar 

  • James NP, Jones B (2016) Origin of carbonate sedimentary rocks. Wiley, Chicester, UK, p 446

    Google Scholar 

  • James NP, Narbonne GM, Armstrong AKR (2020) Aragonite depositional facies in a Late Ordovician Calcite Sea, Eastern Laurentia. Sedimentol 67. doi.org/10.1111/sed.12753

  • Jennings JN (1962) The limestone geomorphology of the Nullarbor Plains (Australia). In: International Congress of Speleology. Bari. pp. 371–386

    Google Scholar 

  • Jennings (1968) Syngenetic Karst in Australi. In: Williams PW, Jennins (eds) Contributions to the study of karst; Australian National University, Research School of Pacific Studies. Department of Geography, Publication G/5

    Google Scholar 

  • Ku TCW, Walter LM, Coleman ML, Blake RE, Martini AM (1999) Coupling between sulfur recycling and syndepositional carbonate dissolution; evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, USA. Geochim Cosmochim Acta 63:2529–2546

    Article  Google Scholar 

  • Kyser TK, James NP, Bone Y (1998) Alteration of Cenozoic cool-water carbonates to low-Mg calcite in marine waters; Gambier Embayment, southern Australia. J Sediment Res 68:947–955

    Article  Google Scholar 

  • Kyser TK, James NP, Bone Y (2002) Shallow burial dolomitization and dedolomitization of Cenozoic cool-water limestones, southern Australia; geochemistry and origin. J Sediment Res 72:146–157

    Article  Google Scholar 

  • Lowry DC (1970) Geology of the Western Australian part of the Eucla Basin. Geol Surv W Aus Bull 122:201

    Google Scholar 

  • Lowry DC, Jennings JN (1974) The Nullarbor karst Australia. Z fuer Geomorphol 18:35–81

    Google Scholar 

  • Mack GH, James WC (1992) Calcic Paleosols of the Plio-Pleistocene camp rice and Palomas formations, Southern Rio Grande Rift, USA. Sed Geol 77:89–109

    Article  Google Scholar 

  • Middleton JF, James NP, James C, Bone Y (2014) Cross-shelf seawater exchange controls the distribution of temperature, salinity, and neritic carbonate sediments in the Great Australian Bight. J Geophys Rese Ocean 119. doi:https://doi.org/10.1002/2013JC009420

  • Miller CR, James NP, Bone Y (2012) Prolonged carbonate diagenesis under an evolving late cenozoic climate; Nullarbor Plain, southern Australia. Sed Geol 261–262:33–49

    Article  Google Scholar 

  • Murray-Wallace CV (2018) Quaternary history of the Coorong Coastal Plain, Southern Australia. Springer International Publishing, Cham, Switzerland, p 229

    Book  Google Scholar 

  • Nelson CS, James NP (2000) Marine cements in mid-tertiary cool-water shelf limestones of New Zealand and Southern Australia. Sedimentol 47:609–629

    Article  Google Scholar 

  • Nicolaides S, Wallace MW (1997) Pressure dissolution and cementation in an Oligio-Miocene non-tropical limestone (Clifton Formation), Otway Basin, Australia. In: James NP, Clarke JDA (eds) Cool-water carbonates. SEPM, pp. 249–262

    Google Scholar 

  • Patterson WP, Walter LM (1994) Depletion of 13C in seawater Ω C02 on modern carbonate platforms: significance for the carbon isotopic record of carbonates. Geolo 22:885–888

    Article  Google Scholar 

  • Reeckmann SA, Gill ED (1981) Rates of vadose diagenesis in quaternary dune and shallow marine calcarenites, Warnambool, Victoria, Australia. Sed Geol 30:157–172

    Article  Google Scholar 

  • Reekman S (1988) Diagenetic alterations in temperate shelf carbonates from southeastern Australia. Sed Geol 60:209–219

    Article  Google Scholar 

  • Rivers JM, James NP, Kyser TK (2008) Early diagenesis of carbonates on a cool-water carbonate shelf, Southern Australia. J Sediment Res 78:784–802

    Article  Google Scholar 

  • Smith AM, Nelson, CS (2003) Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits. Earth-Sci Rev 63: 1–31

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific Publications, Oxford, p 482

    Book  Google Scholar 

  • Verrecchia EP, Freytet P, Verrecchia KE, Dumont J-L (1995) Spherulites in calcrete laminar crusts; biogenic CaCO3 precipitation as a major contributor to crust formation. J Sediment Res, Sect A: Sediment Petrol Process 65:690–700

    Google Scholar 

  • Walter LM, Burton EA (1990) Dissolution of recent platform carbonate sediments in marine pore fluids. Am J Sci 290:601–643

    Article  Google Scholar 

  • Warren JK (1983) Pedogenic calcrete as it occurs in quaternary calcareous dunes in Coastal South Australia. J Sediment Petrol 53:787–796

    Google Scholar 

  • Webb JA, James JM (2006) Karst evolution of the Nullarbor Plain, Australia. In: Harmon RS, Wicks CM (eds) Perspectives on Karst Geomorphology, Hydrology, and Geochemistry—a tribute volume to Derek C Ford and William B. White. Geological Society of America, Boulder, Colorado, pp 65–78

    Google Scholar 

  • Woodhead JD, Sniderman JM, Hellstrom J, Drysdale RN, Maaas R, White N, White S, Devine P (2019) The antiquity of Nullarbor speleothems and implications for karst paleoclimate archives. Sci Rep 9:603–611

    Article  Google Scholar 

  • Wright VP (1994) Paleosols in shallow marine carbonate sequences. Earth Sci Rev 35:367–395

    Article  Google Scholar 

  • Wright VP, Platt NH, Wimbledon WA (1988) Biogenic laminar calcretes: evidence of calcified root-mat horizons in paleosols. Sedimentol 35:603–620

    Article  Google Scholar 

  • Wright VP, Tucker ME (eds) (1991) Calcretes. International Association of Sedimentologists, Reprint Series Vol 2. Blackwell Scientific Publications, pp 352

    Google Scholar 

  • Zhou J, Chafetz HS (2009) Biogenic caliches in Texas; the role of organisms and effect of climate. Sed Geol 222:207–225

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noel P. James .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

James, N.P., Bone, Y. (2021). Diagenesis. In: Biogenic Sedimentary Rocks in a Cold, Cenozoic Ocean. Springer, Cham. https://doi.org/10.1007/978-3-030-63982-2_6

Download citation

Publish with us

Policies and ethics