Skip to main content

Robot-Assisted Upper Tract Surgery

  • Chapter
  • First Online:
Urologic Surgery in the Digital Era

Abstract

Purpose: Recently developed robotic devices may significantly compensate for ergonomic deficiencies of flexible ureterorenoscopy (FURS) respectively retrograde intra-renal surgery (RIRS). We want to update on current developments.

Material and Methods: Based on personal experiences and Medline/Pubmed research, the current role of robot-assisted FURS is evaluated. There are four studies available in the literature (1× with Sensei-Magellan-system, 3× with Avicenna Roboflex™). The Sensei-Magellan-system is no longer used for FURS. 2b). Recently first experimental trials with the Monarch System have been presented.

Results: The Avicenna Roboflex™ is the only currently available system. It consists of surgeon’s console and manipulator of endoscope. The console provides an adjustable seat with armrests and two joysticks to manipulate the endoscope: the right wheel enables deflection similar to the hand-piece of any standard ureterorenoscope. The left joystick allows rotation as well as advancing and retracting the scope. The speed of rotation and advancement can be regulated at the screen of the console. The device has undergone several technological improvements during the last 3 years. All clinical studies (2× phase 2, 1× phase 3) using Avicenna Roboflex™ demonstrated safety and efficacy of the device offering significant improved ergonomics for the surgeon (IDEAL-stage). In the largest series (N = 266) preparation of the robot required 4:30 min (range 3–8 min); docking time was 4 min (range 1–29 min). Console time to identify the stone amounted 4 min (range 1–12 min); total operating time was 96 min (range 58–193 min) including a console time of 65 (16–174) min. Laser lithotripsy was performed in 245 patients (92%), 112 (42%) patients required extraction of larger fragments using N-gage-basket. We encountered one case of urosepsis (Clavien 3a) requiring treatment on an intensive care unit. There were only two cases of technical failure requiring conversion to classical FURS. Moroever, we were are to use the device also for ablation of an upper tract urothelial cancer.

Conclusion: All studies were able to demonstrate safety and efficacy of robotic FURS using Avicenna Roboflex™ in clinical scenario with significant improvement of ergonomics. However, future studies are necessary to evaluate the final role of robotic upper tract renal surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rassweiler JJ, Teber D. Advances in laparoscopic surgery in urology Nat. Rev Urol. 2016;13:387–99.

    Article  Google Scholar 

  2. Rassweiler J, Binder J, Frede T. Robotic and telesurgery: will they change our future. Curr Opin Urol. 2001;11:309–20.

    Article  CAS  Google Scholar 

  3. Desai MM, Aron M, Inderbir SG, Pascal-Haber Ukimura O, Kaouk JH, Stahler G, Barbagli O, Carlson C. Flexible robotic retrograde renoscopy: description of novel robotic device and preliminary laboratory experience. Urology. 2008;72:42–6.

    Article  Google Scholar 

  4. Desai MM, Grover R, Aron M, Ganpule A, Joshi SS, Desai MR, Gill IS. Robotic flexible ureteroscopy for renal calculi: initial clinical experience. J Urol. 2011;186:563–8.

    Article  Google Scholar 

  5. Saglam R, Kabakci AS, Koruk E, Tokatli Z. How did we designed and improved a new Turkish robot for flexible ureterorenoscopy. J Endourol. 2012;(26 suppl.1):A275 (MP44–12).

    Google Scholar 

  6. Saglam R, Muslumanoglu AY, Tokatlı Z, et al. A new robot for flexible ureteroscopy: development and early clinical results (IDEAL Stage 1-2b). Eur Urol. 2014;66:1092–100.

    Article  Google Scholar 

  7. Rassweiler JJ, Knoll T, Köhrmann KU, McAteer JA, Lingeman JE, Cleveland RO, Bailey MR, Chaussy C. Shock wave technology and application: an update. Eur Urol. 2011;59:784–96.

    Article  Google Scholar 

  8. Beiko DT, Denstedt JD. Advances in ureterorenoscopy. Urol Clin North Am. 2007;34:397–408.

    Article  Google Scholar 

  9. Preminger GM, Tiselius HG, Assimos DG, Alken P, Buck AC, Gallucci M, Knoll T, Lingeman JE, Nakada SY, Pearle MS, Sarica K, Türk C, Wolf JS Jr; American Urological Association Education and Research, Inc; European Association of Urology. 2007 Guideline for the management of ureteral calculi. Eur Urol. 2007;52:1610–31.

  10. Wright AE, Rukin NJ, Somani BK. Ureteroscopy and stones: current status and future expectations. World J Nephrol. 2014;3:243–8.

    Article  Google Scholar 

  11. Rassweiler J, Rassweiler MC, Klein J. New technology in ureteroscopy and percutaneous nephrolithotomy. Curr Opin Urol. 2016;26:95–106.

    Article  Google Scholar 

  12. Elkoushy MA, Andonian S. Prevalence of orthopedic complaints among endourologists are commen and their compliance with radiation safety measures very important. Endourol. 2011;25(10):1609–13.

    Article  Google Scholar 

  13. Healy KA, Pak RW, Cleary RC, Colo-Herdman A, Bagley D. Hand and wrist problems among endourologists are very common. Endourology. 2011;25(12):1905–20.

    Google Scholar 

  14. Aron M, Haber GP, Desai MM, Gill IS. Flexible robotics: a new paradigm. Curr Opin Urol. 2007;17(3):151–5.

    Article  Google Scholar 

  15. Rassweiler J, Fiedler M, Charalampogiannis N, Kabakci AS, Saglam R, Klein JT. Robot-assisted flexible ureteroscopy: an update. Urolithiasis. 2018;46:69–77.

    Article  Google Scholar 

  16. Rassweiler JJ, Autorino R, Klein J, Mottrie A, Goezen AS, Stolzenburg JU, Rha KH, Schurr M, Kaouk J, Patel V, Dasgupta P, Liatsikos E. Future of robotic surgery in urology. BJU Int. 2017;120:822–41.

    Article  Google Scholar 

  17. Schurr MO, Buess G, Neisius B, Voges U. Robotics and telemanipulation technologies for endoscopic surgery. A review of the ARTEMIS project. Surg Endosc. 2000;14:375–81.

    Article  CAS  Google Scholar 

  18. Reichenspurner H, Damiano R, Mack M, et al. Use of the voice-controlled surgical system ZEUS for endoscopic coronary bypass grafting. J Thorac Cardiovasc Surg. 1999;118:11–6.

    Article  CAS  Google Scholar 

  19. Marescaux J, Leroy J, Gagner M, et al. Transatlantic robot-assisted telesurgery. Nature. 2001;413:379–80.

    Article  CAS  Google Scholar 

  20. Mohr FW, Falk V, Diegeler A, Autschbach R. Computer-enhanced coronary artery surgery. J Thorac Cardiovasc Surg. 1999;117:1212–5.

    Article  CAS  Google Scholar 

  21. Binder J, Kramer W. Robotically assisted laparoscopic radical prostatectomy. BJU Int. 2001;87:408–10.

    Article  CAS  Google Scholar 

  22. Abbou CC, Hoznek A, Salomon L, Olsson LE, Lobontiu A, Saint F, Cicco A, Antiphon P, Chopin D. Laparoscopic radical prostatectomy with a remote controlled robot. J Urol. 2001;165:1964–6.

    Article  CAS  Google Scholar 

  23. Rassweiler J, Frede T, Seemann O, Stock C, Sentker L. Telesurgical laparoscopic radical prostatectomy. Eur Urol. 2001;40:75–83.

    Article  CAS  Google Scholar 

  24. Menon M, Shrivastava A, Tewari A, et al. Laparoscopic and robot assisted radical prostatectomy: establishment of a structured program and preliminary analysis of outcomes. J Urol. 2002;168:945–9.

    Article  Google Scholar 

  25. Leal Ghezzi T, Campos Corleta O. 30 years of robotic surgery. World J Surg. 2016;40:2550–7.

    Article  Google Scholar 

  26. Sutherland GR, Maddahi Y, Gan LS, Lama S, Zareinia K. Robotics in the neurosurgical treatment of glioma. Surg Neurol Int. 2015;6(Suppl 1):S1–8.

    Article  Google Scholar 

  27. Antoniou GA, Riga CV, Mayer EK, Cheshire NJ, Bicknell CD. Clinical applications of robotic technology in vacular and endovascular surgery. J Vasc Surg. 2011;53:463–99.

    Google Scholar 

  28. Gilling P, Reuther R, Kahokehr A, Fraundorfer M. Aquablation – image-guided robot-assisted water-jet ablation. BJU Int. 2016;117:923–9.

    Article  CAS  Google Scholar 

  29. https://www.geekfence.com/2018/03/24/monarch-is-a-new-platform-from-surgical-robot-pioneer-frederic-moll/

  30. https://www.medtechdive.com/news/jjs-auris-unveils-early-results-on-monarch-robot-for-lung-procedures/555223/

  31. Desai M. Robotic URS. World Congress on Endourology 2019, Abu Dhabi, 29th October – 2nd November 2019.

    Google Scholar 

  32. Geavlete P, Saglam R, Georgescu D, Multescu R, Iordache V, Kabakci AS, Ene C, Geavlete B. Robotic flexible ureteroscopy versus classis flexible ureteroscopy in renal stones: initial Romanian experience. Chirurgia. 2016;111:326–9.

    PubMed  Google Scholar 

  33. Secker A, Rassweiler J, Neisius A. Future perspectives of flexible ureteroscopy. Curr Opin Urol. 2019;29:113–7.

    Article  Google Scholar 

  34. Erkurt B, Caskurlu T, Atis G, Gurbuz C, Arikan O, Pelit ES, Altay A, Erdogan F, Yildirim A. Treatment of renal stones with flexible ureteroscopy in preschool age children. J Endourol. 2012;26:625–9.

    Article  Google Scholar 

  35. Hellawell GO, Mutch SJ, Thevendran G, Wells E, Morgan RJ. Radiation exposure and the urologist: what aret the risks? J Urol. 2005;174:948–5.

    Article  CAS  Google Scholar 

  36. Kim KP, Miller DL, Berrington de Gonzalez A, Balter S, Kleinerman RA, Ostroumova E, Simon SL, Linet MS. Occupational radiation doses to operators performing fluoroscopically-guided procedures. Health Phys. 2012;103:80–99.

    Article  CAS  Google Scholar 

  37. Carey RI, Gomez CS, Maurici G, Lynne CM, Leveillee RJ, Bird VG. Frequency of ureteroscope damage seen at a tertiary care center. J Urol. 2006;176:607–10.

    Article  Google Scholar 

  38. Caddedu JA. Comment on Saglam R, Muslumanoglu AY, Tokatlı Z et al. A new robot for flexible ureteroscopy: Development and early clinical results (IDEAL Stage 1-2b). Eur Urol 2014; 66:1092–1100. J Urol. 2015;193:1277.

    Article  Google Scholar 

  39. Proietti S, Dragos L, Emiliani E, Buttice S, Talso M, Baghdadi M, Villa L, Doizi S, Giusti G, Traxer O. Ureteroscopic skills with and without Robofelx Avicenna in trhe K-boxR simulator. Cent Eur J Urol. 2017;70:76–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Rassweiler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rassweiler, J., Fiedler, M., Saglam, R., Klein, JT. (2021). Robot-Assisted Upper Tract Surgery. In: Veneziano, D., Huri, E. (eds) Urologic Surgery in the Digital Era. Springer, Cham. https://doi.org/10.1007/978-3-030-63948-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63948-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63947-1

  • Online ISBN: 978-3-030-63948-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics