Skip to main content

Stone Treatment

  • Chapter
  • First Online:
Urologic Surgery in the Digital Era

Abstract

Urolithiasis is a common urologic problem with rising prevalence and incidence around the world, constituting a significant burden on health care systems.

Percutaneous nephrolithotomy (PCNL) is the gold standard for treating large kidney stones (≥2 cm). The percutaneous puncture of a renal calyx is a key step in this procedure and many techniques have been investigated in order to improve its safety and success.

Miniaturized PCNL was introduced to reduce access-related complications and morbidity but the results were not very different from standard PCNL.

Alternative puncture approaches, such as the incorporated optical system, the Uro-Dyna-CT, the SonixGPS and the electromagnetic navigation systems have been developed to facilitate puncture. From these, the SonixGPS and the electromagnetic navigation system are the most promising and clinically applicable techniques, as they allow adjustment of the needle path in real time, provide fast procedures and learning curves and avoid fluoroscopy use.

Renal drainage after PCNL is also a matter of debate. Multiple studies have shown that in selected cases outcomes are similar if patients are managed with a ureteral stent and no nephrostomy tube (tubeless) or even without a stent or nephrostomy tube (totally tubeless). Biodegradable ureteral stents may be an option to overcome stent-related complications and the need for stent removal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Raheem OA, Khandwala YS, Sur RL, Ghani KR, Denstedt JD. Burden of urolithiasis: trends in prevalence, treatments, and costs. Eur Urol Focus. 2017;3:18–26.

    Article  Google Scholar 

  2. Turk C, Skolarikos A, Neisius A, et al. Guidelines on urolithiasis 2019. European Association of Urology. https://uroweb.org/guideline/urolithiasis/

  3. Ghani KR, Andonian S, Bultitude M, Desai M, Giusti G, Okhunov Z, Preminger GM, de la Rosette J. Percutaneous nephrolithotomy: update, trends, and future directions. Eur Urol. 2016;70:382–96.

    Article  Google Scholar 

  4. Kalogeropoulou C, Kallidonis P, Liatsikos EN. Imaging in percutaneous nephrolithotomy. J Endourol. 2009;23:1571–7.

    Article  Google Scholar 

  5. Marchant F, Recabal P, Fernández MI, Osorio F, Benavides J. Postoperative morbidity of tubeless versus conventional percutaneous nephrolithotomy: a prospective comparative study. Urol Res. 2011;39:477–81.

    Article  Google Scholar 

  6. Kara C, Resorlu B, Bayindir M, Unsal A. A randomized comparison of totally tubeless and standard percutaneous nephrolithotomy in elderly patients. Urology. 2010;76:289–93.

    Article  Google Scholar 

  7. Istanbulluoglu MO, Cicek T, Ozturk B, Gonen M, Ozkardes H. Percutaneous nephrolithotomy: nephrostomy or tubeless or totally tubeless? Urology. 2010;75:1043–6.

    Article  Google Scholar 

  8. Barros AA, Oliveira C, Ribeiro AJ, Autorino R, Reis RL, Duarte ARC, Lima E. In vivo assessment of a novel biodegradable ureteral stent. World J Urol. 2018;36:277–83.

    Article  CAS  Google Scholar 

  9. Ganpule AP, Bhattu AS, Desai M. PCNL in the twenty-first century: role of microperc, miniperc, and ultraminiperc. World J Urol. 2015;33:235–40.

    Article  Google Scholar 

  10. Giusti G, Piccinelli A, Taverna G, Benetti A, Pasini L, Corinti M, Teppa A, Zandegiacomo de Zorzi S, Graziotti P. Miniperc? No, Thank You! Eur Urol. 2007;51:810–5.

    Article  Google Scholar 

  11. Desai J, Solanki R. Ultra-mini percutaneous nephrolithotomy (UMP): one more armamentarium. BJU Int. 2013;112:1046–9.

    PubMed  Google Scholar 

  12. Desai MR, Sharma R, Mishra S, Sabnis RB, Stief C, Bader M. Single-step percutaneous nephrolithotomy (microperc): the initial clinical report. J Urol. 2011;186:140–5.

    Article  Google Scholar 

  13. Ruhayel Y, Tepeler A, Dabestani S, et al. Tract sizes in miniaturized percutaneous nephrolithotomy: a systematic review from the european association of urology urolithiasis guidelines panel [Figure presented]. Eur Urol. 2017;72:220–35.

    Article  Google Scholar 

  14. Kidd CF, Conlin MJ. Ureteroscopically assisted percutaneousrenal access. Urology. 2003;61:1244–5.

    Article  Google Scholar 

  15. Khan F, Borin JF, Pearle MS, McDougall EM, Clayman RV. Endoscopically guided percutaneous renal access: “seeing is believing”. J Endourol. 2006;20:451–5.

    Article  Google Scholar 

  16. Scoffone CM, Cracco CM, Cossu M, Grande S, Poggio M, Scarpa RM. Endoscopic combined intrarenal surgery in galdakao-modified supine valdivia position: a new standard for percutaneous nephrolithotomy? Eur Urol. 2008;54:1393–403.

    Article  Google Scholar 

  17. Knoll T, Wezel F, Michel MS, Honeck P, Wendt-Nordahl G. Do patients benefit from miniaturized tubeless percutaneous nephrolithotomy? A comparative prospective study. J Endourol. 2010;24:1075–9.

    Article  Google Scholar 

  18. Undre S, Olsen S, Mustafa N, Patel A. “Pass the ball!” Simultaneous flexible nephroscopy and retrograde intrarenal surgery for large residual upper-pole staghorn stone. J Endourol. 2004;18:844–7.

    Article  Google Scholar 

  19. Bader MJ, Gratzke C, Seitz M, Sharma R, Stief CG, Desai M. The “all-seeing needle”: initial results of an optical puncture system confirming access in percutaneous nephrolithotomy. Eur Urol. 2011;59:1054–9.

    Article  Google Scholar 

  20. Rassweiler JJ, Müller M, Fangerau M, Klein J, Goezen AS, Pereira P, Meinzer H-P, Teber D. iPad-assisted percutaneous access to the kidney using marker-based navigation: initial clinical experience. Eur Urol. 2012;61:628–31.

    Article  Google Scholar 

  21. Ritter M, Rassweiler M-C, Michel MS. The uro dyna-CT enables three-dimensional planned laser-guided complex punctures. Eur Urol. 2015;68:880–4.

    Article  Google Scholar 

  22. Li X, Long Q, Chen X, Dalin H, He H. Real-time ultrasound-guided PCNL using a novel SonixGPS needle tracking system. Urolithiasis. 2014;42:341–6.

    Article  CAS  Google Scholar 

  23. Slater RC, Ost M. Percutaneous stone removal: new approaches to access and imaging. Curr Urol Rep. 2015;16:29.

    Article  Google Scholar 

  24. Rodrigues PL, Vilaça JL, Oliveira C, Cicione A, Rassweiler J, Fonseca J, Rodrigues NF, Correia-Pinto J, Lima E. Collecting system percutaneous access using real-time tracking sensors: first pig model in vivo experience. J Urol. 2013;190:1932–7.

    Article  Google Scholar 

  25. Lima E, Rodrigues PL, Mota P, Carvalho N, Dias E, Correia-Pinto J, Autorino R, Vilaça JL. Ureteroscopy-assisted percutaneous kidney access made easy: first clinical experience with a novel navigation system using electromagnetic guidance (IDEAL stage 1). Eur Urol. 2017;72:610–6.

    Article  Google Scholar 

  26. Damiano R, Oliva A, Esposito C, De Sio M, Autorino R, D’Armiento M. Early and late complications of double pigtail ureteral stent. Urol Int. 2002;69:136–40.

    Article  Google Scholar 

  27. Chew BH, Lange D. Advances in ureteral stent development. Curr Opin Urol. 2016;26:277–82.

    Article  Google Scholar 

  28. Chew BH, Paterson RF, Clinkscales KW, Levine BS, Shalaby SW, Lange D. In vivo evaluation of the third generation biodegradable stent: a novel approach to avoiding the forgotten stent syndrome. J Urol. 2013;189:719–25.

    Article  Google Scholar 

  29. Olweny EO, Landman J, Andreoni C, Collyer W, Kerbl K, Onciu M, Välimaa T, Clayman RV. Evaluation of the use of a biodegradable ureteral stent after retrograde endopyelotomy in a porcine model. J Urol. 2002;167:2198–202.

    Article  Google Scholar 

  30. Barros AA, Rita A, Duarte ARC, Pires RA, Sampaio-Marques B, Ludovico P, Lima E, Mano JF, Reis RL. Bioresorbable ureteral stents from natural origin polymers. J Biomed Mater Res Part B Appl Biomater. 2015;103:608–17.

    Article  Google Scholar 

  31. Turney BW. A new model with an anatomically accurate human renal collecting system for training in fluoroscopy-guided percutaneous nephrolithotomy access. J Endourol. 2014;28:360–3. https://doi.org/10.1089/end.2013.0616.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ghazi A, Campbell T, Melnyk R, et al. Validation of a full-immersion simulation platform for percutaneous nephrolithotomy using three-dimensional printing technology. J Endourol. 31:1314–20. https://doi.org/10.1089/end.2017.0809.

  33. Blankstein U, Lantz AG, D’A Honey RJ, et al. Simulation-based flexible ureteroscopy training using a novel ureteroscopy part-task trainer. Can Urol Assoc J. 2015;9:331–5. https://doi.org/10.5489/cuaj.2811.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cameron JL. William Stewart Halsted: our surgical heritage. Ann Surg. 1997;225:445–58. https://doi.org/10.1097/00000658-199705000-00002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barry Issenberg S, Mcgaghie WC, Petrusa ER, et al. Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Med Teach. 2005;27:10–28. https://doi.org/10.1080/01421590500046924.

    Article  PubMed  Google Scholar 

  36. McGaghie WC, Issenberg SB, Cohen ER, et al. Does simulation-based medical education with deliberate practice yield better results than traditional clinical education? A meta-analytic comparative review of the evidence. Acad Med. 2011;86:706–11. https://doi.org/10.1097/ACM.0b013e318217e119.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Huri E, Skolarikos A, Tatar İ, et al. Simulation of RIRS in soft cadavers: a novel training model by the Cadaveric Research On Endourology Training (CRET) Study Group. World J Urol. 2016;34:741–6. https://doi.org/10.1007/s00345-015-1676-3.

    Article  PubMed  Google Scholar 

  38. Cacciamani GE, Okhunov Z, Meneses AD, et al. Impact of three-dimensional printing in urology: state of the art and future perspectives. A systematic review by ESUT-YAUWP Group. Eur Urol. 2019;76:209–21. https://doi.org/10.1016/j.eururo.2019.04.044.

    Article  PubMed  Google Scholar 

  39. de la Rosette JJMCH, Laguna MP, Rassweiler JJ, Conort P. Training in percutaneous nephrolithotomy—a critical review. Eur Urol. 2008;54:994–1003. https://doi.org/10.1016/j.eururo.2008.03.052.

    Article  PubMed  Google Scholar 

  40. Atalay HA, Volkan Ü, Iter A, et al. Impact of three-dimensional printed pelvicaliceal system models on residents’ understanding of pelvicaliceal system anatomy before percutaneous nephrolithotripsy surgery: a pilot study. J Endourol. 30:1132–7. https://doi.org/10.1089/end.2016.0307.

  41. Baumhauer M, Feuerstein M, Meinzer H-P, Rassweiler J. Navigation in endoscopic soft tissue surgery: perspectives and limitations. J Endourol. 2008;22:751–66. https://doi.org/10.1089/end.2007.9827.

    Article  PubMed  Google Scholar 

  42. Li H, Chen Y, Liu C, et al. Construction of a three-dimensional model of renal stones: comprehensive planning for percutaneous nephrolithotomy and assistance in surgery. World J Urol. 2013;31:1587–92. https://doi.org/10.1007/s00345-012-0998-7.

    Article  PubMed  Google Scholar 

  43. Antonelli JA, Beardsley H, Faddegon S, et al. A novel device to prevent stone fragment migration during percutaneous lithotripsy: results from an in-vitro kidney model. J Endourol. 30:1239–43. https://doi.org/10.1089/end.2016.0466.

  44. Atalay HA, Canat HL, Ülker V, et al. Impact of personalized three-dimensional (3D) printed pelvicalyceal system models on patient information in percutaneous nephrolithotripsy surgery: a pilot study. Int Braz J Urol. 2017;43:470–5. https://doi.org/10.1590/s1677-5538.ibju.2016.0441.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Quirke K, Abdullatif A, Brunckhorst O, et al. Learning curves in urolithiasis surgery: a systematic review. J Endourol. 32:1008–20. https://doi.org/10.1089/end.2018.0425.

  46. Skolarikos A, Gravas S, Laguna MP, et al. Training in ureteroscopy: a critical appraisal of the literature: TRAINING IN URETEROSCOPY. BJU Int. 2011;108:798–805. https://doi.org/10.1111/j.1464-410X.2011.10337.x.

    Article  PubMed  Google Scholar 

  47. Villa L, Emre Şener T, Somani BK, et al. Initial content validation results of a new simulation model for flexible ureteroscopy: the key-box. J Endourol. 31:72–7. https://doi.org/10.1089/end.2016.0677.

  48. Al-Jabir A, Abdullatif A, Takashige A, et al. Validation of the advanced scope trainer for flexible ureterorenoscopy training. Urology. 110:45–50. https://doi.org/10.1016/j.urology.2017.07.047.

  49. Adams F, Qiu T, Mark A, et al. Soft 3D-printed phantom of the human kidney with collecting system. Ann Biomed Eng. 2017;45:963–72. https://doi.org/10.1007/s10439-016-1757-5.

    Article  PubMed  Google Scholar 

  50. Orecchia L, Manfrin D, Germani S, Del Fabbro D, Asimakopoulos AD, Finazzi Agrò E, Miano R. Introducing 3D printed models of the upper urinary tract for high-fidelity simulation of retrograde intrarenal surgery. 3D Print Med. 2021;7(1):15. https://doi.org/10.1186/s41205-021-00105-9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orecchia, L., Anacleto, S., Germani, S., Miano, R., Lima, E. (2021). Stone Treatment. In: Veneziano, D., Huri, E. (eds) Urologic Surgery in the Digital Era. Springer, Cham. https://doi.org/10.1007/978-3-030-63948-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63948-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63947-1

  • Online ISBN: 978-3-030-63948-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics