Skip to main content

Security Vulnerabilities and Intelligent Solutions for IoMT Systems

  • Chapter
  • First Online:
Internet of Medical Things

Part of the book series: Internet of Things ((ITTCC))

Abstract

The Internet of Medical Things (IoMT) is one the most practical and useful applications of the Internet of Things (IoT), achieved by connecting medical devices and applications to the online healthcare system. IoMT, if fully and properly implemented, in our healthcare systems can save precious lives and can be a boon to healthcare professionals, especially when addressing challenges caused by pandemics such as COVID-19 and other communicable diseases. In an IoMT, machine-to machine connectivity is possible through short-range communication devices such as Bluetooth or long-range communications (using 5G communication). However security and privacy remain a major challenge faced by IoMT developers and stakeholders. Transmission of critical medical information to the cloud computing setup wirelessly without addressing security issues introduces the risk of hacking and data corruption. It is paramount that the potential security issues are identified and appropriate security measures are implemented. This chapter discussed the various security vulnerabilities that have been identified by researchers and also highlights innovative solutions that have been proposed by researchers. Various solutions such as malware detection, usage of multimodal feature-based biometric identification schemes, ontology-based recommendation tool for addressing various IoMT threat scenarios, and blockchain-enabled authentication techniques are some of the approaches that are discussed and summarized in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. HIPAA Journal. https://www.hipaajournal.com/87pc-healthcare-organizations-adoptinternet-of-things-technology-2019-8712

  2. Dharavath, K., Talukdar, F. A, & Laskar R. H. (2013). Study on biometric authentication systems, challenges and future trends. In IEEE International conference on computational intelligence and computing research, pp. 1–7.

    Google Scholar 

  3. Hussain, S., Kamal, A., Ahmad, S., Rasool, G., & Iqbal, S. (2014). Threat modelling methodologies: A survey. Sci. Int., 26(4), 1607.

    Google Scholar 

  4. Möckel, C., & Abdallah, A. E. (2010) 2010 6th International conference on information assurance and security, IAS 2010, pp. 149–154.

    Google Scholar 

  5. Johnstone, M. N. (2010). Threat modelling with stride and UML. In Australian information security management conference (November), vol. 18.

    Google Scholar 

  6. Larry, G. (2007). The security development lifecycle: Microsoft.

    Google Scholar 

  7. Wuyts, K., Scandariato, R., & Joosen, W. (2016). LINDDUN: A privacy threat analysis framework.

    Google Scholar 

  8. Mohsen Nia, A., & Jha, N. K. (2016). A comprehensive study of security of Internet-of-Things. IEEE Transactions on Emerging Topics in Computing, 5(4), 1.

    Google Scholar 

  9. Aufner, P. (2019). The IoT security gap: A look down into the valley between threat models and their implementation. International Journal of Information Security, 19, 3–14.

    Article  Google Scholar 

  10. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer System, 29(7), 1645.

    Article  Google Scholar 

  11. Fleisch, E., Weinberger, M., & Wortmann, F. (2014). Business models for the Internet of Things (pp. 1–18). Zurich: Bosch IoT Lab.

    Google Scholar 

  12. Green, J. (2014). CTO data virtualization: IoT reference model white paper.

    Google Scholar 

  13. Challa, S., Wazid, M., Das, A., Kumar, N., Goutham Reddy, A., Yoon, E., & Yoo, K. (2017). Secure signature-based authenticated key establishment scheme for future IoT applications. IEEE Access, 5, 3028–3043.

    Article  Google Scholar 

  14. Kumar, R., Zhang, X., Wang, W., Khan, R., Kumar, J., & Sharif, A. (2019). A multimodal malware detection technique for android IoT devices using various features. IEEE Access, 7, 64411–64430.

    Article  Google Scholar 

  15. Wazid, M., Das, A., Odelu, V., Kumar, N., & Susilo, W. (2020). Secure remote user authenticated key establishment protocol for smart home environment. IEEE Transactions on Dependable and Secure Computing, 17, 391–406.

    Article  Google Scholar 

  16. Alsubaei, F., Abuhussein, A., & Shiva, S. (2019). Ontology-based security recommendation for the Internet of medical things. IEEE Access, 7, 48948–48960.

    Article  Google Scholar 

  17. Gatouillat, A., Badr, Y., Massot, B., & Sejdic, E. (2018). Internet of medical things: A review of recent contributions dealing with cyber-physical systems in medicine. IEEE Internet of Things Journal, 5, 3810–3822.

    Article  Google Scholar 

  18. Kumar, P., Braeken, A., Gurtov, A., Iinatti, J., & Ha, P. (2017). Anonymous secure framework in connected smart home environments. IEEE Transactions on Information Forensics and Security, 12, 968–979.

    Article  Google Scholar 

  19. Kumar, P., Gurtov, A., Iinatti, J., Ylianttila, M., & Sain, M. (2016). Lightweight and secure session-key establishment scheme in smart home environments. IEEE Sensors Journal, 16, 254–264.

    Article  Google Scholar 

  20. Wazid, M., Das, A., Kumar, N., & Vasilakos, A. (2019). Design of secure key management and user authentication scheme for fog computing services. Future Generation Computer Systems, 91, 475–492.

    Article  Google Scholar 

  21. Wazid, M., Das, A., Rodrigues, J., Shetty, S., & Park, Y. (2019). IoMT malware detection approaches: Analysis and research challenges. IEEE Access, 7, 182459–182476.

    Article  Google Scholar 

  22. Wang, X., Wang, L., Li, Y., & Gai, K. (2018). Privacy-aware efficient fine-grained data access control in internet of medical things based fog computing. IEEE Access, 6, 47657–47665.

    Article  Google Scholar 

  23. Yanambaka, V., Mohanty, S., Kougianos, E., & Puthal, D. (2019). PMsec: Physical Unclonable function-based robust and lightweight authentication in the internet of medical things. IEEE Transactions on Consumer Electronics, 65, 388–397.

    Article  Google Scholar 

  24. Saleem, M., Mahmood, K., & Kumari, S. (2020). Comments on “AKM-IoV: Authenticated key management protocol in fog computing-based internet of vehicles deployment”. IEEE Internet of Things Journal, 7, 4671–4675.

    Article  Google Scholar 

  25. Shen, S., Huang, L., Zhou, H., Yu, S., Fan, E., & Cao, Q. (2018). Multistage signaling game-based optimal detection strategies for suppressing malware diffusion in fog-cloud-based IoT networks. IEEE Internet of Things Journal, 5, 1043–1054.

    Article  Google Scholar 

  26. Das, A., Zeadally, S., & He, D. (2018). Taxonomy and analysis of security protocols for Internet of Things. Future Generation Computer Systems, 89, 110–125.

    Article  Google Scholar 

  27. Sun, Y., Lo, F., & Lo, B. (2019). Security and privacy for the Internet of Medical Things enabled healthcare systems: A survey. IEEE Access, 7, 183339–183355.

    Article  Google Scholar 

  28. Stallings, W. Cryptography and network security. Upper Saddle River: Prentice Hall Press.

    Google Scholar 

  29. Takase, H., Kobayashi, R., Kato, M., & Ohmura, R. (2019). A prototype implementation and evaluation of the malware detection mechanism for IoT devices using the processor information. International Journal of Information Security, 19, 71–81.

    Article  Google Scholar 

  30. Rudd, E., Rozsa, A., Gunther, M., & Boult, T. (2017). A survey of stealth malware attacks, mitigation measures, and steps toward autonomous open world solutions. IEEE Communications Surveys & Tutorials, 19, 1145–1172.

    Article  Google Scholar 

  31. Kumar, G. (2016). Denial of service attacks – An updated perspective. Systems Science & Control Engineering, 4, 285–294.

    Google Scholar 

  32. Kao, Y., Huang, K., Gu, H., & Yuan, S. (2013). uCloud: A user-centric key management scheme for cloud data protection. IET Information Security, 7, 144–154.

    Article  Google Scholar 

  33. Li, J., Chen, X., Li, M., Li, J., Lee, P., & Lou, W. (2014). Secure deduplication with efficient and reliable convergent key management. IEEE Transactions on Parallel and Distributed Systems, 25, 1615–1625.

    Article  Google Scholar 

  34. Tysowski, P., & Hasan, M. (2013). Hybrid attribute- and re-encryption-based key management for secure and scalable mobile applications in clouds. IEEE Transactions on Cloud Computing, 1, 172–186.

    Article  Google Scholar 

  35. Jia Yu, Kui Ren, Cong Wang, & Varadharajan, V. (2015). Enabling cloud storage auditing with key-exposure resistance. IEEE Transactions on Information Forensics and Security, 10, 1167–1179.

    Article  Google Scholar 

  36. Eschenauer, L., & Gligor, V. (2002). A key-management scheme for distributed sensor networks. In Proceedings of the 9th ACM conference on Computer and communications security – CCS ’02.

    Google Scholar 

  37. Haowen Chan, & Perrig, A. (2003). Security and privacy in sensor networks. Computer, 36, 103–105.

    Article  Google Scholar 

  38. Du, W., Deng, J., Han, Y., Varshney, P., Katz, J., & Khalili, A. (2005). A pairwise key predistribution scheme for wireless sensor networks. ACM Transactions on Information and System Security (TISSEC), 8, 228–258.

    Article  Google Scholar 

  39. Blundo, C., De Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., & Yung, M. (1998). Perfectly secure key distribution for dynamic conferences. Information and Computation, 146, 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  40. Messerges, T., Dabbish, E., & Sloan, R. (2002). Examining smart-card security under the threat of power analysis attacks. IEEE Transactions on Computers, 51, 541–552.

    Article  MathSciNet  MATH  Google Scholar 

  41. Wazid, M., Das, A., Kumar, N., & Rodrigues, J. (2017). Secure three-factor user authentication scheme for renewable-energy-based smart grid environment. IEEE Transactions on Industrial Informatics, 13, 3144–3153.

    Article  Google Scholar 

  42. Wang, D., Cheng, H., He, D., & Wang, P. (2018). On the challenges in designing identity-based privacy-preserving authentication schemes for mobile devices. IEEE Systems Journal, 12, 916–925.

    Article  Google Scholar 

  43. Wazid, M., Das, A., Kumari, S., & Khan, M. (2016). Design of sinkhole node detection mechanism for hierarchical wireless sensor networks. Security and Communication Networks, 9, 4596–4614.

    Article  Google Scholar 

  44. An Enhanced Privacy-Aware Authentication Scheme for Distributed Mobile Cloud Computing Services. (2017). KSII Transactions on Internet and Information Systems, 11

    Google Scholar 

  45. Wenliang Du, Jing Deng, Han, Y. S., & Varshney, P. (2006). A Key predistribution scheme for sensor networks using deployment knowledge. IEEE Transactions on Dependable and Secure Computing, 3, 62–77.

    Article  Google Scholar 

  46. Dolev, D., & Yao, A. (1983). On the security of public key protocols. IEEE Transactions on Information Theory, 29, 198–208.

    Article  MathSciNet  MATH  Google Scholar 

  47. Canetti, R. (2000). Security and composition of multiparty cryptographic protocols. Journal of Cryptology, 13, 143–202.

    Article  MathSciNet  MATH  Google Scholar 

  48. Canetti, R., & Herzog, J. (2010). Universally composable symbolic security analysis. Journal of Cryptology, 24, 83–147.

    Article  MathSciNet  MATH  Google Scholar 

  49. Roy, S., Chatterjee, S., Das, A., Chattopadhyay, S., Kumari, S., & Jo, M. (2018). Chaotic map-based anonymous user authentication scheme with user biometrics and fuzzy extractor for crowdsourcing Internet of Things. IEEE Internet of Things Journal, 5, 2884–2895.

    Article  Google Scholar 

  50. Xin, Y., Kong, L., Liu, Z., Wang, C., Zhu, H., Gao, M., Zhao, C., & Xu, X. (2018). Multimodal feature-level fusion for biometrics identification system on IoMT platform. IEEE Access, 6, 21418–21426.

    Article  Google Scholar 

  51. Pirbhulal, S., Wu, W., & Li, G. (2018). A biometric security model for wearable healthcare. In 2018 IEEE International Conference on Data Mining Workshops (ICDMW).

    Google Scholar 

  52. Challa, S., Das, A., Kumari, S., Odelu, V., Wu, F., & Li, X. (2016). Provably secure three-factor authentication and key agreement scheme for session initiation protocol. Security and Communication Networks, 9, 5412–5431.

    Article  Google Scholar 

  53. Rajasegarar, S., Leckie, C., & Palaniswami, M. (2008). Anomaly detection in wireless sensor networks. IEEE Wireless Communications, 15, 34–40.

    Article  Google Scholar 

  54. Garg, N., Wazid, M., Das, A. K., Singh, D. P., Rodrigues, J. J. P. C., & Park, Y. (2020). BAKMP-IoMT: Design of blockchain enabled authenticated key management protocol for ınternet of medical things deployment. IEEE Access, 8, 95956–95977.

    Article  Google Scholar 

  55. Azaria, A., Ekblaw, A., Vieira, T., & Lippman, A. (2016). MedRec: Using blockchain for medical data access and permission management. In 2nd International conference on Open Big Data (OBD), pp. 25–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeyavel, J., Parameswaran, T., Mannan, J.M., Hariharan, U. (2021). Security Vulnerabilities and Intelligent Solutions for IoMT Systems. In: Hemanth, D.J., Anitha, J., Tsihrintzis, G.A. (eds) Internet of Medical Things. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-63937-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63937-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63936-5

  • Online ISBN: 978-3-030-63937-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics