Abstract
This article is an extended version of the minicourse given by the second author at the summer school of the conference Interactions of quantum affine algebras with cluster algebras, current algebras and categorification, held in June 2018 in Washington. The aim of the minicourse, consisting of three lectures, was to present a number of results and conjectures on certain monoidal categories of finite-dimensional representations of quantum affine algebras, obtained by exploiting the fact that their Grothendieck rings have the natural structure of a cluster algebra.
To Vyjayanthi Chari on her birthday
This is a preview of subscription content, access via your institution.
Buying options









Notes
- 1.
In these lectures, we will only consider type I representations of quantum enveloping algebras. All representations can be obtained from the type I representations by twisting with some signs, see e.g. [4, §10.1].
References
M. Brito, V. Chari, Tensor products and q-characters of HL-modules and monoidal categorifications, J. Éc. polytech. math. 6 (2019), 581–619.
V. Chari, Braid group actions and tensor products, Int. Math. Res. Not. (2002), no. 7, 357–382.
V. Chari, A. Pressley, Quantum affine algebras, Commun. Math. Phys. 142 (1991), 261–283.
V. Chari, A. Pressley, A guide to quantum groups. Cambridge University Press 1994.
V. Chari, A. Pressley, Minimal affinizations of representations of quantum groups: the simply laced case, J. Algebra 184 (1996), 1–30.
V. Chari, A. Pressley, Quantum affine algebras and affine Hecke algebras, Pacific J. Math. 174 (1996), 295–326.
V. Chari, A. Pressley, Factorizations of representations of quantum affine algebras in Modular Interfaces, (Riverside, Calif. 1995), AMS/IP Stud. Adv. Math. 4, Amer. Math. Soc., Providence, 1997, 33–40.
H. Derksen, J. Weyman, A. Zelevinsky, Quivers with potential and their representations I: Mutations, Selecta Math., 14 (2008), 59–119.
H. Derksen, J. Weyman, A. Zelevinsky, Quivers with potential and their representations II: Applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), 749–790.
R. Fujita, Affine highest weight categories and quantum affine Schur-Weyl duality of Dynkin quiver types, arXiv:1710.11288
R. Fujita, Geometric realization of Dynkin quiver type quantum affine Schur-Weyl duality, Int. Math. Res. Not. IMRN 22 (2020), 8353–8386.
E. Frenkel, E. Mukhin, Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys. 216 (2001), 23–57.
E. Frenkel, N. Reshetikhin, The q-characters of representations of quantum affine algebras, Recent developments in quantum affine algebras and related topics, Contemp. Math. 248 (1999), 163–205.
S. Fomin, A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), 497–529.
S. Fomin, A. Zelevinsky, Cluster algebras II: Finite type classification, Invent. Math. 154 (2003), 63–121.
S. Fomin, A. Zelevinsky, Cluster algebras: notes for the CDM-03 conference, in Current developments in mathematics, 2003, 1–34, Int. Press, Somerville, MA, 2003.
C. Geiss, B. Leclerc, J. Schröer, Factorial cluster algebras, Doc. Math. 18 (2013), 249–274.
V. Ginzburg, N. Reshetikhin, E. Vasserot, Quantum groups and flag varieties, in Mathematical aspects of conformal and topological field theories and quantum groups (South Hadley, MA, 1992), 101–130, Contemp. Math., 175, Amer. Math. Soc., Providence, RI, 1994.
M. Gekhtman, M. Shapiro, A. Vainshtein, Cluster algebras and Poisson geometry, AMS Math. Survey and Monographs 167, AMS 2010.
D. Hernandez, Algebraic approach to q,t-characters, Adv. Math. 187 (2004), 1–52.
D. Hernandez, The Kirillov-Reshetikhin conjecture and solutions of T-systems, J. Reine Angew. Math. 596 (2006), 63–87.
D. Hernandez, B. Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010), 265–341.
D. Hernandez, B. Leclerc, Monoidal categorifications of cluster algebras of type A and D, in Symmetries, integrable systems and representations, (K. Iohara, S. Morier-Genoud, B. Rémy, eds.), Springer proceedings in mathematics and statistics 40, 2013, 175–193.
D. Hernandez, B. Leclerc, Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math. 701 (2015), 77–126.
D. Hernandez, B. Leclerc, A cluster algebra approach to q-characters of Kirillov-Reshetikhin modules, J. Eur. Math. Soc., 18 (2016), 1113-1159.
D. Hernandez, B. Leclerc, Cluster algebras and category \(\mathcal {O}\) for representations of Borel subalgebras of quantum affine algebras, Algebra Number Theory 10 (2016), 2015–2052.
D. Hernandez, H. Oya, Quantum Grothendieck ring isomorphisms, cluster algebras and Kazhdan-Lusztig algorithm, Adv. Math. 374 (2019), 192–272.
S.-J. Kang, M. Kashiwara, M. Kim, Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras, II, Duke Math. J. 164 (2015), 1549–1602.
S.-J. Kang, M. Kashiwara, M. Kim, S.-J. Oh, Simplicity of heads and socles of tensor products, Compos. Math. 151 (2015), 377–396.
S.-J. Kang, M. Kashiwara, M. Kim, S.-J. Oh, Monoidal categorification of cluster algebras, J. Amer. Math. Soc. 31 (2018), 349–426.
M. Kashiwara, M. Kim, S.-J. Oh, Monoidal categories of modules over quantum affine algebras of type A and B, Proc. London Math. Soc. 118 (2019) 43–77.
M. Kashiwara, S.-j. Oh, Categorical relations between Langlands dual quantum affine algebras: doubly laced types, to appear in J. Algebraic Combin. 49 (2019), 401–435. https://doi.org/10.1007/s10801-018-0829-z
A. Kuniba, T. Nakanishi, J. Suzuki, Functional relations in solvable lattice models: I. Functional relations and representation theory, Int. J. Mod. Phys. A9 (1994), 5215–5266.
B. Leclerc, Imaginary vectors in the dual canonical basis of U q(n), Transform. Groups 8 (2003), 95–104.
B. Leclerc, Quantum loop algebras, quiver varieties, and cluster algebras, in Representations of Algebras and Related Topics, (A. Skowroński and K. Yamagata, eds.), European Math. Soc. Series of Congress Reports, 2011, 117–152.
E. Lapid, A. Minguez, Geometric conditions for \(\square \)-irreducibility of certain representations of the general linear group over a non-Archimedean local field, Adv. Math. 339 (2018), 113–190.
G. Lusztig, On quiver varieties, Adv. Math. 136 (1998), 141–182.
H. Nakajima, t-analogs of q-characters of Kirillov-Reshetikhin modules of quantum affine algebras, Represent. Theory 7 (2003), 259–274.
H. Nakajima, Quiver varieties and cluster algebras, Kyoto J. Math. 51 (2011), 71–126.
Fan Qin, Triangular bases in quantum cluster algebras and monoidal categorification conjectures, Duke Math. J. 166 (2017), 2337–2442.
A. Savage, P. Tingley, Quiver Grassmannians, quiver varieties and preprojective algebras, Pacific J. Math. 251 (2011), 393–429.
Acknowledgements
D. Hernandez is supported in part by the European Research Council under the European Union’s Framework Programme H2020 with ERC Grant Agreement number 647353 QAffine.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Hernandez, D., Leclerc, B. (2021). Quantum Affine Algebras and Cluster Algebras. In: Greenstein, J., Hernandez, D., Misra, K.C., Senesi, P. (eds) Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification. Progress in Mathematics, vol 337. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-63849-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-63849-8_2
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-030-63848-1
Online ISBN: 978-3-030-63849-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)