Skip to main content

An Experimental Validation on Mechanical Damages Caused by Air Cannon Projectile

  • Conference paper
  • First Online:
Artificial Intelligence and Renewables Towards an Energy Transition (ICAIRES 2020)

Abstract

The main objective of this paper is to study the damages caused by mechanical shocks for different materials and compare between the expiremental and simulation results. The study is based on series of experiments conducted on test bench that has been modified to comply with the experiments. Wherein, many equipment have been designed and manufactured in the laboratory. The shocks are created by Air Canon with different pressure values. The obtained results have provided a conclusive remarks about the shape and dimension of the damages with consideration of the material, speed, and angle of the shock.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harizi, W., Chaki, S., Bourse, G., Ourak, M.: Mechanical damage assessment of Glass Fiber-Reinforced Polymer composites using passive infrared thermography. Compos. Part B Eng. 59, 74–79 (2014). https://doi.org/10.1016/j.compositesb.2013.11.021

    Article  Google Scholar 

  2. Takahashia, H., et al.: Mechanical properties and damage behavior of non-magnetic high manganese austenitic steels. J. Nucl. Mater. 258, 1644–1650 (1998). https://doi.org/10.1016/S0022-3115(98)00282-7

    Article  Google Scholar 

  3. ArjunTekalur, S., Shivakumar, K., Shukla, A.: Mechanical behavior and damage evolution in E-glass vinyl ester and carbon composites subjected to static and blast loads. Compos. Part B: Eng. 39(1), 57–65 (2008). https://doi.org/10.1016/j.compositesb.2007.02.020

    Article  Google Scholar 

  4. Shaoquan, W., Shangli, D., Yu, G., Yungang, S.: Thermal ageing effects on mechanical properties and barely visible impact damage behavior of a carbon fiber reinforced bismaleimide composite. Mater. Des. 115, 213–223 (2017). https://doi.org/10.1016/j.matdes.2016.11.062

    Article  Google Scholar 

  5. Hagiwara, N., Oguchi, N.: Fatigue behavior of line pipes subjected to severe mechanical damage. IPC International Pipeline Conference 40221, 291–298 (2016). https://doi.org/10.1115/IPC1998-2035

    Article  Google Scholar 

  6. Yang, S.Q., Ranjith, P.G., Jing, H.W., Tian, W.L., Ju, Y.: An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics 65, 180–197 (2017). https://doi.org/10.1016/j.geothermics.2016.09.008

    Article  Google Scholar 

  7. Banan, R., Bazylak, A., Jean, Z.: Effect of mechanical vibrations on damage propagation in polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy 38(34), 14764–14772 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.136

    Article  Google Scholar 

  8. Keaveny, T.M., Wachtel, E.F., Guo, X.E., Hayes, W.C.: Mechanical behavior of damaged trabecular bone. J. Biomech. 27(11), 1309–1318 (1994). https://doi.org/10.1016/0021-9290(94)90040-X

    Article  Google Scholar 

  9. Davim, J.P., Reis, P.: Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. J. Mater. Process. Technol. 160(2), 160–167 (2005). https://doi.org/10.1016/j.jmatprotec.2004.06.003

    Article  Google Scholar 

  10. Wang, X., Shi, J.: Validation of Johnson-Cook plasticity and damage model using impact experiment. Int. J. Impact Eng 60, 67–75 (2013). https://doi.org/10.1016/j.ijimpeng.2013.04.010

    Article  Google Scholar 

  11. Shokrieh, M.M., Lessard, L.B.: Progressive fatigue damage modeling of composite materials, Part II: material characterization and model verification. J. Compos. Mater. 34(13), 1081–1116 (2000). https://doi.org/10.1177/002199830003401302

    Article  Google Scholar 

  12. Laliberté, J.F., Straznicky, P.V., Poon, C.: Impact damage in fiber metal laminates, part 1: experiment. AIAA J. 43(11), 2445–2452 (2012). https://doi.org/10.2514/1.15159

    Article  Google Scholar 

  13. Hess, P.A., Menzel, B.C., Dauskardt, R.H.: Fatigue damage in bulk metallic glass II: experiments. Scripta Mater. 54(3), 355–361 (2006). https://doi.org/10.1016/j.scriptamat.2005.10.007

    Article  Google Scholar 

  14. Clegg, R.A., White, D.M., Riedel, W., Harwick, W.: Hypervelocity impact damage prediction in composites: Part I material model and characterisation. Int. J. Impact Eng. 33(1–12), pp. 190–200 (2006) https://doi.org/10.1016/j.ijimpeng.2006.09.055

  15. Christensen, R.N.: Air cannon. US Patent US6644294B2 (2001)

    Google Scholar 

  16. Houlihane, T.S.: Generation of a testbench for a representation of a device. US Patent US7444257B2. ARM Ltd. (2003)

    Google Scholar 

  17. Bachti, S., et al.: Test bench for active ageing of power modules reproducing constraints close to automotive driving conditions. In: 2013 15th European Conference on Power Electronics and Applications (EPE)., Lille, France, pp. 1–10. IEEE (2013) https://doi.org/10.1109/epe.2013.6634415

  18. Doghmane, M.Z., Kidouche, M.: Decentralized controller Robustness improvement using longitudinal overlapping decomposition- application to web winding system. Elektronika ir Elektronika 24(5), 10–18 (2018). https://doi.org/10.5755/j01.eie.24.5.21837

    Article  Google Scholar 

  19. Doghmane, M.Z., et al.: A new decomposition strategy approach applied for a multi-stage printing system control optimization. In: 4th Internation Conference on Electrical Engineering (ICEE), Boumerdes, Algeria, pp. 1–6. IEEE (2015) https://doi.org/10.1109/intee.2015.7416751

  20. Doghmane, M.Z.: Optimal decentralized control design with overlapping structure. Magister Thesis. University M’hamed Bougara of Boumerdes, Algeria (2011)

    Google Scholar 

  21. Doghmane, M.Z.: Conception de commande décentralisée des systèmes complexes en utilisant les stratégies de décomposition et optimisation par BMI. PhD Thesis, University M’hamed Bougara of Boumerdes, Algeria (2019)

    Google Scholar 

Download references

Aknowlegments

This study was sponsored by DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) Algiers-Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mossaab Chenine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chenine, M., Benammar, S., Doghmane, M.Z. (2021). An Experimental Validation on Mechanical Damages Caused by Air Cannon Projectile. In: Hatti, M. (eds) Artificial Intelligence and Renewables Towards an Energy Transition. ICAIRES 2020. Lecture Notes in Networks and Systems, vol 174. Springer, Cham. https://doi.org/10.1007/978-3-030-63846-7_83

Download citation

Publish with us

Policies and ethics