Skip to main content

Hybrid Deep Shallow Network for Assessment of Depression Using Electroencephalogram Signals

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12534)

Abstract

Depression is a mental health disorder characterised by persistently depressed mood or loss of interest in activities resulting impairment in daily life significantly. Electroencephalography (EEG) can assist with the accurate diagnosis of depression. In this paper, we present two different hybrid deep learning models for classification and assessment of patient suffering with depression. We have combined convolutional neural network with Gated recurrent units (RGUs), thus the proposed network is shallow and much smaller in size in comparison to its counter LSTM network. In addition to this, proposed approach is less sensitive to parameter settings. Extensive experiments on EEG dataset shows that the proposed hybrid model achieve highest accuracy, f1 score 99.66%, 99.93% and 98.87%, 99.12% for eye open and eye close dataset respectively in comparison to state of the art methods. Based on high performance, the proposed hybrid approach can be used for assessment of depression for clinical applications and can deployed remotely in hospital or private clinics for clinical evaluation.

Keywords

  • EEG
  • Depression
  • Anxiety
  • Electroencephalographic
  • Mental disorder

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-63836-8_21
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-63836-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Notes

  1. 1.

    Code: https://github.com/RespectKnowledge.

References

  1. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H., Subha, D.P.: Automated EEG-based screening of depression using deep convolutional neural network. Comput. Methods Programs Biomed. 161, 103–113 (2018)

    CrossRef  Google Scholar 

  2. Ay, B., et al.: Automated depression detection using deep representation and sequence learning with EEG signals. J. Med. Syst. 43(7), 1–12 (2019). https://doi.org/10.1007/s10916-019-1345-y

    CrossRef  Google Scholar 

  3. Huang, K.Y., Wu, C.H., Su, M.H.: Attention-based convolutional neural network and long short-term memory for short-term detection of mood disorders based on elicited speech responses. Pattern Recogn. 88, 668–678 (2019)

    CrossRef  Google Scholar 

  4. Li, X., et al.: EEG-based mild depression recognition using convolutional neural network. Med. Biol. Eng. Comput. 57(6), 1341–1352 (2019). https://doi.org/10.1007/s11517-019-01959-2

    CrossRef  Google Scholar 

  5. Liao, S.C., Wu, C.T., Huang, H.C., Cheng, W.T., Liu, Y.H.: Major depression detection from EEG signals using kernel eigen-filter-bank common spatial patterns. Sensors 17(6), 1385 (2017)

    CrossRef  Google Scholar 

  6. Mahato, S., Paul, S.: Detection of major depressive disorder using linear and non-linear features from EEG signals. Microsyst. Technol. 25(3), 1065–1076 (2018). https://doi.org/10.1007/s00542-018-4075-z

    CrossRef  Google Scholar 

  7. Mdhaffar, A., et al.: DL4DED: deep learning for depressive episode detection on mobile devices. In: Pagán, J., Mokhtari, M., Aloulou, H., Abdulrazak, B., Cabrera, M.F. (eds.) ICOST 2019. LNCS, vol. 11862, pp. 109–121. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32785-9_10

    CrossRef  Google Scholar 

  8. Mumtaz, W., Qayyum, A.: A deep learning framework for automatic diagnosis of unipolar depression. Int. J. Med. Informatics 132, 103983 (2019)

    CrossRef  Google Scholar 

  9. Razzak, I., Blumenstein, M., Xu, G.: Multiclass support matrix machines by maximizing the inter-class margin for single trial EEG classification. IEEE Trans. Neural Syst. Rehabil. Eng. 27(6), 1117–1127 (2019)

    CrossRef  Google Scholar 

  10. Razzak, I., Hameed, I.A., Xu, G.: Robust sparse representation and multiclass support matrix machines for the classification of motor imagery EEG signals. IEEE J. Transl. Eng. Health Med. 7, 1–8 (2019)

    CrossRef  Google Scholar 

  11. Razzak, M.I., Imran, M., Xu, G.: Big data analytics for preventive medicine. Neural Comput. Appl. 32(9), 4417–4451 (2019). https://doi.org/10.1007/s00521-019-04095-y

    CrossRef  Google Scholar 

  12. Razzak, M.I., Naz, S., Zaib, A.: Deep learning for medical image processing: overview, challenges and the future. In: Dey, N., Ashour, A.S., Borra, S. (eds.) Classification in BioApps. LNCVB, vol. 26, pp. 323–350. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65981-7_12

    CrossRef  Google Scholar 

  13. Yıldırım, Ö., Baloglu, U.B., Acharya, U.R.: A deep convolutional neural network model for automated identification of abnormal EEG signals. Neural Comput. Appl. 32(20), 15857–15868 (2018). https://doi.org/10.1007/s00521-018-3889-z

    CrossRef  Google Scholar 

  14. Zhang, X., Hu, B., Zhou, L., Moore, P., Chen, J.: An EEG based pervasive depression detection for females. In: Zu, Q., Hu, B., Elçi, A. (eds.) ICPCA/SWS 2012. LNCS, vol. 7719, pp. 848–861. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37015-1_74

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imran Razzak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Qayyum, A., Razzak, I., Mumtaz, W. (2020). Hybrid Deep Shallow Network for Assessment of Depression Using Electroencephalogram Signals. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12534. Springer, Cham. https://doi.org/10.1007/978-3-030-63836-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63836-8_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63835-1

  • Online ISBN: 978-3-030-63836-8

  • eBook Packages: Computer ScienceComputer Science (R0)