Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H., Subha, D.P.: Automated EEG-based screening of depression using deep convolutional neural network. Comput. Methods Programs Biomed. 161, 103–113 (2018)
CrossRef
Google Scholar
Ay, B., et al.: Automated depression detection using deep representation and sequence learning with EEG signals. J. Med. Syst. 43(7), 1–12 (2019). https://doi.org/10.1007/s10916-019-1345-y
CrossRef
Google Scholar
Huang, K.Y., Wu, C.H., Su, M.H.: Attention-based convolutional neural network and long short-term memory for short-term detection of mood disorders based on elicited speech responses. Pattern Recogn. 88, 668–678 (2019)
CrossRef
Google Scholar
Li, X., et al.: EEG-based mild depression recognition using convolutional neural network. Med. Biol. Eng. Comput. 57(6), 1341–1352 (2019). https://doi.org/10.1007/s11517-019-01959-2
CrossRef
Google Scholar
Liao, S.C., Wu, C.T., Huang, H.C., Cheng, W.T., Liu, Y.H.: Major depression detection from EEG signals using kernel eigen-filter-bank common spatial patterns. Sensors 17(6), 1385 (2017)
CrossRef
Google Scholar
Mahato, S., Paul, S.: Detection of major depressive disorder using linear and non-linear features from EEG signals. Microsyst. Technol. 25(3), 1065–1076 (2018). https://doi.org/10.1007/s00542-018-4075-z
CrossRef
Google Scholar
Mdhaffar, A., et al.: DL4DED: deep learning for depressive episode detection on mobile devices. In: Pagán, J., Mokhtari, M., Aloulou, H., Abdulrazak, B., Cabrera, M.F. (eds.) ICOST 2019. LNCS, vol. 11862, pp. 109–121. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32785-9_10
CrossRef
Google Scholar
Mumtaz, W., Qayyum, A.: A deep learning framework for automatic diagnosis of unipolar depression. Int. J. Med. Informatics 132, 103983 (2019)
CrossRef
Google Scholar
Razzak, I., Blumenstein, M., Xu, G.: Multiclass support matrix machines by maximizing the inter-class margin for single trial EEG classification. IEEE Trans. Neural Syst. Rehabil. Eng. 27(6), 1117–1127 (2019)
CrossRef
Google Scholar
Razzak, I., Hameed, I.A., Xu, G.: Robust sparse representation and multiclass support matrix machines for the classification of motor imagery EEG signals. IEEE J. Transl. Eng. Health Med. 7, 1–8 (2019)
CrossRef
Google Scholar
Razzak, M.I., Imran, M., Xu, G.: Big data analytics for preventive medicine. Neural Comput. Appl. 32(9), 4417–4451 (2019). https://doi.org/10.1007/s00521-019-04095-y
CrossRef
Google Scholar
Razzak, M.I., Naz, S., Zaib, A.: Deep learning for medical image processing: overview, challenges and the future. In: Dey, N., Ashour, A.S., Borra, S. (eds.) Classification in BioApps. LNCVB, vol. 26, pp. 323–350. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65981-7_12
CrossRef
Google Scholar
Yıldırım, Ö., Baloglu, U.B., Acharya, U.R.: A deep convolutional neural network model for automated identification of abnormal EEG signals. Neural Comput. Appl. 32(20), 15857–15868 (2018). https://doi.org/10.1007/s00521-018-3889-z
CrossRef
Google Scholar
Zhang, X., Hu, B., Zhou, L., Moore, P., Chen, J.: An EEG based pervasive depression detection for females. In: Zu, Q., Hu, B., Elçi, A. (eds.) ICPCA/SWS 2012. LNCS, vol. 7719, pp. 848–861. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37015-1_74
CrossRef
Google Scholar