Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 162 Accesses

Abstract

This chapter describes the research done on samples Ti implanted in our facilities at UCM, but laser annealed with the XeCl excimer laser described in Sect. 2.2.1, belonging to SCREEN-LASSE (Paris). This laser features a wavelength of 308 nm, a pulse duration of 150 ns at FWHM and a laser spot of 10 × 10 mm2, which allows for full die exposure processes. A full design of experiment was performed using the new laser, where samples were characterized using electrical and quantum efficiency measurements. Samples were fabricated with different supersaturation conditions, by sweeping the Ti implantation dose and laser fluence. The goal is to find the best candidate in terms of quantum efficiency in the sub-bandgap region (the SWIR range).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deunamuno S, Fogarassy E (1989) A thermal description of the melting of c-silicon and a-silicon under pulsed excimer lasers. Appl Surf Sci 36:1–11

    Article  Google Scholar 

  2. Ishihara R, Yeh WC, Hattori T, Matsumura M (1995) Effects of light-pulse duration on excimer-laser crystallization characteristics of silicon thin-films. Jpn J Appl Phys 1(34):1759–1764

    Article  Google Scholar 

  3. Olea J, del Prado A, Pastor D, Martil I, Gonzalez-Diaz G (2011) Sub-bandgap absorption in Ti implanted Si over the Mott limit. J Appl Phys 109

    Google Scholar 

  4. Dawber PG, Elliott RJ (1963) Theory of optical absorption by vibrations of defects in silicon. Proc Phys Soc 81:453–460

    Article  CAS  Google Scholar 

  5. Echlin P (2009) Handbook of sample preparation for scanning electron microscopy and x-ray microanalysis. Springer, USA, p 332

    Google Scholar 

  6. Poppendieck TD, Ngoc TC, Webb MB (1978) An electron diffraction study of the structure of silicon (100). Surf Sci 75:287–315

    Article  CAS  Google Scholar 

  7. Williams DB, Carter CB (1996) Transmission electron microscopy. Springer

    Google Scholar 

  8. Moretti G (1998) Auger parameter and Wagner plot in the characterization of chemical states by X-ray photoelectron spectroscopy: a review. J Electron Spectrosc Relat Phenom 95:95–144

    Article  CAS  Google Scholar 

  9. Henderson R (1972) Silicon cleaning with hydrogen peroxide solutions: a high energy electron diffraction and Auger electron spectroscopy study. J Electrochem Soc 119:772–775

    Article  CAS  Google Scholar 

  10. Donovan EP, Spaepen F, Turnbull D, Poate JM, Jacobson DC (1983) Heat of crystallization and melting-point of amorphous-silicon. Appl Phys Lett 42:698–700

    Article  CAS  Google Scholar 

  11. Green MA (2008) Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol Energ Mat Sol C 92:1305–1310

    Article  CAS  Google Scholar 

  12. Hishikawa Y et al (1991) Interference-free determination of the optical-absorption coefficient and the optical gap of amorphous-silicon thin-films. Jpn J Appl Phys 1(30):1008–1014

    Article  Google Scholar 

  13. Moon S, Minghong L, Grigoropoulos CP (2002) Heat transfer and phase transformations in laser annealing of thin Si films. J Heat Transf 124:12

    Google Scholar 

  14. Aydinly A, G. Y, Topaçli C (1988) Simulation of explosive crystallisation in pulsed laser irradiated a-Si. J Appl Phys 22:6

    Google Scholar 

  15. Gotz G (1986) Explosive crystallization processes in silicon. Appl Phys a-Mater 40:29–36

    Article  Google Scholar 

  16. Thompson MO et al (1984) Melting temperature and explosive crystallization of amorphous-silicon during pulsed laser irradiation. Phys Rev Lett 52:2360–2363

    Article  CAS  Google Scholar 

  17. Thompson MO et al (1983) Silicon melt, regrowth, and amorphization velocities during pulsed laser irradiation. Phys Rev Lett 50:896–899

    Article  CAS  Google Scholar 

  18. Miki T, Morita K, Sano N (1997) Thermodynamic properties of titanium and iron in molten silicon. Metall Mater Trans B 28:861–867

    Article  Google Scholar 

  19. Lowndes DH et al (1985) Direct imaging of “explosively” propagating buried molten layers in amorphous silicon using optical, Tem and Ion backscattering measurements. MRS Proc 51:131

    Article  Google Scholar 

  20. Baeri P, Rimini E (1996) Laser annealing of silicon. Mater Chem Phys 46:169–177

    Article  CAS  Google Scholar 

  21. Bonafos C, Mathiot D, Claverie A (1998) Ostwald ripening of end-of-range defects in silicon. J Appl Phys 83:3008

    Article  CAS  Google Scholar 

  22. Smit C et al (2003) Determining the material structure of microcrystalline silicon from Raman spectra. J Appl Phys 94:3582–3588

    Article  CAS  Google Scholar 

  23. Maley N (1992) Critical investigation of the infrared-transmission-data analysis of hydrogenated amorphous-silicon alloys. Phys Rev B 46:2078–2085

    Article  CAS  Google Scholar 

  24. Edwards DF, Ochoa E (1980) Infrared refractive index of silicon. Appl Opt 19:4130–4131

    Article  CAS  Google Scholar 

  25. Jellison GE Jr, Lowndes DH (1987) Measurements of the optical properties of liquid silicon and germanium using nanosecond time-resolved ellipsometry. Appl Phys Lett 51:352–354

    Article  CAS  Google Scholar 

  26. Olea J (2009) Procesos de implantación iónica para semiconductores de banda intermedia. Thesis dissertation

    Google Scholar 

  27. Garcia-Hemme E (2015) Respuesta infrarroja en silicio mediante implantación iónica de metales de transición. Thesis dissertation

    Google Scholar 

  28. Olea J et al (2012) Low temperature intermediate band metallic behavior in Ti implanted Si. Thin Solid Films 520:6614–6618

    Article  CAS  Google Scholar 

  29. Castan H et al (2012) Electrical properties of intermediate band (IB) silicon solar cells obtained by titanium ion implantation. AIP Conf Proc 1496:189–192

    Article  CAS  Google Scholar 

  30. Pastor D et al (2012) Insulator to metallic transition due to intermediate band formation in Ti-implanted silicon. Sol Energ Mat Sol C 104:159–164

    Article  CAS  Google Scholar 

  31. Pastor D et al (2013) Electrical decoupling effect on intermediate band Ti-implanted silicon layers. J Phys D Appl Phys 46

    Google Scholar 

  32. Garcia-Hemme E et al (2013) Electrical properties of silicon supersaturated with titanium or vanadium for intermediate band material. Proceedings of the 2013 Spanish Conference on Electron Devices (CDE 2013), 377–380

    Google Scholar 

  33. Olea J et al (2011) Two-layer Hall effect model for intermediate band Ti-implanted silicon. J Appl Phys 109

    Google Scholar 

  34. Garcia-Hemme E et al (2015) Meyer Neldel rule application to silicon supersaturated with transition metals. J Phys D Appl Phys 48

    Google Scholar 

  35. Olea J, Pastor D, Toledano-Luque M, Martil I, Gonzalez-Diaz G (2011) Depth profile study of Ti implanted Si at very high doses. J Appl Phys 110

    Google Scholar 

  36. How H, Weidong T, Vittoria C (1997) AC-Hall effect in multilayered semiconductors. J Light Technol 15:1006–1011

    Article  CAS  Google Scholar 

  37. Neamen DA (1997) Semiconductor physics and devices, vol 3, McGraw-Hill, New York

    Google Scholar 

  38. Gambino JP, Colgan EG (1998) Silicides and ohmic contacts. Mater Chem Phys 52:99–146

    Article  CAS  Google Scholar 

  39. Olea J et al (2016) Room temperature photo-response of titanium supersaturated silicon at energies over the bandgap. J Phys D Appl Phys 49

    Google Scholar 

  40. Chiarotti G, Nannarone S, Pastore R, Chiaradia P (1971) Optical absorption of surface states in ultrahigh vacuum cleaved (111) surfaces of Ge and Si. Phys Rev B-Solid St 4:3398

    Article  Google Scholar 

  41. Casalino M, Coppola G, Iodice et al (2010) Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives. Sensors 10:10571–10600

    Google Scholar 

  42. Fan H, Ramdas A (1959) Infrared absorption and photoconductivity in irradiated silicon. J Appl Phys 30:1127–1134

    Article  CAS  Google Scholar 

  43. Olea J et al (2013) Ruling out the impact of defects on the below band gap photoconductivity of Ti supersaturated Si. J Appl Phys 114

    Google Scholar 

  44. Viezbicke BD, Patel S, Davis BE, Birnie III DP (2015) Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. physica status solidi (b) 252:1700–1710

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Montero Álvarez .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montero Álvarez, D. (2021). Results: NLA Using a Long Pulse Duration XeCl Laser. In: Near Infrared Detectors Based on Silicon Supersaturated with Transition Metals. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-63826-9_4

Download citation

Publish with us

Policies and ethics