Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 198 Accesses

Abstract

This section deals with the experimental techniques that have been used during the thesis. It covers several areas, from material to device preparation and characterisation. At each subsection, we briefly describe an experimental technique, explaining also its utility in our research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olea J (2009) Procesos de implantación iónica para semiconductores de banda intermedia. Thesis dissertation

    Google Scholar 

  2. Garcia-Hemme E (2015) Respuesta infrarroja en silicio mediante implantación iónica de metales de transición. Thesis dissertation

    Google Scholar 

  3. Shockley W (1954) Forming semiconductive devices by ionic bombardment. U.S. Patent 2,787,564

    Google Scholar 

  4. Collart EJH et al. (2010) Process characterization of low temperature ion implantation using ribbon beam and spot beam On the AIBT iPulsar high current. Ion Implantation Technology 2010 1321, 49

    Google Scholar 

  5. Dearnaley GK, Nelson RS (1969) Ion implantation in semiconductors. Phys Bull 20

    Google Scholar 

  6. Olea J, Toledano-Luque M, Pastor D, Gonzalez-Diaz G, Martil I (2008) Titanium doped silicon layers with very high concentration. J Appl Phys 104

    Google Scholar 

  7. Gibbons JF (1972) Ion implantation in semiconductors 2. damage production and annealing. Pr Inst Electr Elect 60:1062

    Google Scholar 

  8. Suzuki K, Kawamura K, Kikuchi Y, Kataoka Y (2006) Compact model for amorphous layer thickness formed by ion implantation over wide ion implantation conditions. Ieee Trans Electron Devices 53:1186–1192

    Google Scholar 

  9. Yang W et al. (2017) Au-rich filamentary behavior and associated subband gap optical absorption in hyperdoped Si. Phy Rev Mater 1

    Google Scholar 

  10. Liu F et al. (2018) Structural and electrical properties of Se-hyperdoped Si via ion implantation and flash lamp annealing. Nucl Instrum Meth B 424:52–55

    Google Scholar 

  11. Picraux ST (1969) Channeling in semiconductors and its application to the study of ion implantation. Thesis dissertation, 119

    Google Scholar 

  12. Zhang HP et al. (2008) United Gauss-Pearson-IV distribution model of ions implanted into silicon. Solid State Ionics 179:832–836

    Google Scholar 

  13. Olea J, del Prado A, Pastor D, Martil I, Gonzalez-Diaz G (2011) Sub-bandgap absorption in Ti implanted Si over the Mott limit. J Appl Phys 109

    Google Scholar 

  14. Garcia-Hemme E et al. (2013) Far infrared photoconductivity in a silicon based material: Vanadium supersaturated silicon. Appl Phys Lett 103

    Google Scholar 

  15. Ertekin E et al. (2012) Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin. Phys Rev Lett 108

    Google Scholar 

  16. Franta B et al. (2015) Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing. J Appl Phys 118

    Google Scholar 

  17. Ting CY, Crowder BL (1982) Electrical-properties of Al/Ti contact metallurgy for vlsi application. J Electrochem Soc 129:2590–2594

    Google Scholar 

  18. Pankove JI, Lampert MA, Tarng ML (1978) Hydrogenation and dehydrogenation of amorphous and crystalline silicon. Appl Phys Lett 32:439–441

    Google Scholar 

  19. Miki T, Morita K, Sano N (1997) Thermodynamic properties of titanium and iron in molten silicon. Metall Mater Trans B 28:861–867

    Google Scholar 

  20. Cole JM, Humphreys P, Earwaker LG (1984) A melting model for pulsed laser-heating of silicon. Vacuum 34:871–878

    Google Scholar 

  21. Thompson MO et al. (1983) Silicon melt, regrowth, and amorphization velocities during pulsed laser irradiation. Phys Rev Lett 50:896–899

    Google Scholar 

  22. Deunamuno S, Fogarassy E (1989) A thermal description of the melting of c-silicon and a-silicon under pulsed excimer lasers. Appl Surf Sci 36:1–11

    Google Scholar 

  23. Green MA (2008) Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol Energ Mat Sol C 92:1305–1310

    Google Scholar 

  24. Mizoguchi HST, Itou N, Yamazaki T (2016) Short wavelength light source for semiconductor manufacturing: challenge from excimer laser to LPP-EUV light source. Komatsu Technical Report 62:11

    Google Scholar 

  25. Yashiro M et al. Excimer laser gas usage reduction technology for semiconductor manufacturing. Optical Microlithography XXX 10147

    Google Scholar 

  26. Basting D, Stamm U (2001) The development of excimer laser technology—history and future prospects. Z Phys Chem 215:1575–1599

    Google Scholar 

  27. Akane TNT, Matumoto S (1992) Two-step doping using excimer laser in boron doping of silicon. Jpn J Appl Phys 31:4

    Google Scholar 

  28. Venturini J et al. (2004) Excimer laser thermal processing of ultra-shallow junction: laser pulse duration. Thin Solid Films 453:145–149

    Google Scholar 

  29. Miyasaka M, Stoemenos J (1999) Excimer laser annealing of amorphous and solid-phase-crystallized silicon films. J Appl Phys 86:5556–5565

    Google Scholar 

  30. Reitano R, Smith PM, Aziz MJ (1994) Solute trapping of group-iii, iv, and v elements in silicon by an aperiodic stepwise growth-mechanism. J Appl Phys 76:1518–1529

    Google Scholar 

  31. Tang K, Ovrelid EJ, Tranell G, Tangstad M (2009) Critical assessment of the impurity diffusivities in solid and Liquid silicon. Jom-Us 61:49–55

    Google Scholar 

  32. Kuryliw EA (2003) Analyzing the thermal annealing behavior of laser thermal processed silicon. Thesis dissertation

    Google Scholar 

  33. Maszara WP, Rozgonyi GA (1986) Kinetics of damage production in silicon during self-implantation. J Appl Phys 60:2310–2315

    Google Scholar 

  34. Thompson MO et al. (1984) Melting temperature and explosive crystallization of amorphous-silicon during pulsed laser Irradiation. Phys Rev Lett 52:2360–2363

    Google Scholar 

  35. Ishihara R, Yeh WC, Hattori T, Matsumura M (1995) Effects of light-pulse duration on excimer-laser crystallization characteristics of silicon thin-films. Jpn J Appl Phys 1(34):1759–1764

    Google Scholar 

  36. Huet KBC, Negru R, Aing P, Venturini J (2010) Full device exposure laser thermal annealing: high performance and high yield junction formation process. 2010 18th international conference on Advanced thermal processing of Semiconductors (RTP), 4

    Google Scholar 

  37. Gyulai JPF, Krafcsik I, Solyom A, Riedl P, Bori L (1989) Calibration of SIMS measurements by ion implantation. Periodica Polytechnica 34:6

    Google Scholar 

  38. Russ JC (1984) Fundamentals of energy Dispersive x-ray analysis. Butterworths-Heinemann, 314

    Google Scholar 

  39. Vickerman JC, Briggs D (2013). ToF-SIMS: materials analysis by mass spectrometry. IM publications

    Google Scholar 

  40. Pastor D et al. (2011) UV and visible Raman scattering of ultraheavily Ti implanted Si layers for intermediate band formation. Semicond Sci Tech 26

    Google Scholar 

  41. Goldstein J, Newbury DE, Joy DC, Lyman CE, Echlin P, Lifshin E, Sawyer L, Michael JR (2003) Scanning electron microscopy and x-ray microanalysis. Springer US

    Google Scholar 

  42. Giannuzzi LA, Stevie FA (1999) A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30:197–204

    Google Scholar 

  43. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Google Scholar 

  44. Toulemonde M et al. (1985) Time-resolved reflectivity and melting depth measurements using pulsed ruby-laser on silicon. Appl Phys a-Mater 36:31–36

    Google Scholar 

  45. Galvin GJ et al. (1983) Time-resolved conductance and reflectance measurements of Silicon during pulsed-laser annealing. Phys Rev B 27:1079–1087

    Google Scholar 

  46. Kerdiles S et al. (2016) Dopant activation and crystal recovery in arsenic-implanted ultra-thin silicon-on-insulator structures using 308 nm nanosecond laser annealing. 2016 16th international workshop on junction technology (IWJT), 72–75

    Google Scholar 

  47. Holsteyns FRJ, Toan Le Q, Kenis K, Mertens PW (2004) Seeing through the haze: process monitoring and qualification using comprehensive surface data. Yield Management Solutions KLA Tencor Magazine Spring 2004, 5

    Google Scholar 

  48. Halioua M, Liu H-CJO (1989) Engineering, l. i. Optical three-dimensional sensing by phase measuring profilometry 11, 185–215

    Google Scholar 

  49. Maley N (1992) Critical investigation of the infrared-transmission-data analysis of hydrogenated amorphous-silicon alloys. Phys Rev B 46:2078–2085

    Google Scholar 

  50. Liu XG et al. (2014) Black silicon: fabrication methods, properties and solar energy applications. Energ Environ Sci 7:3223–3263

    Google Scholar 

  51. Cobet C (2014) Ellipsometry: a survey of concept. Ellipsometry of functional organic surfaces and films 1–26, Springer

    Google Scholar 

  52. Neamen DA (1997). Semiconductor physics and devices. Vol. 3. McGraw-Hill, New York

    Google Scholar 

  53. Van der Pauw LJ (1958) A method of measuring the resistivity and hall coefficient on lamellae of arbitrary shape. Phillips Tech Rev 20:5

    Google Scholar 

  54. Gonzalez-Diaz G et al. (2017) A robust method to determine the contact resistance using the van der Pauw set up. Measurement 98:151–158

    Google Scholar 

  55. Lin JFLSS, Linares LC, Teng KW (1981) Theoretical analysis of hall factor and hall mobility in p-type silicon. Solid State Electron 24:6

    Google Scholar 

  56. Kirnas IGKPM, Litovchenko PG, Lutsyak VS, Nitsovich VM (1974) Concentration dependence of the hall factor in n-type silicon. Phys Status Solidi A 23:5

    Google Scholar 

  57. Garcia-Hemme E et al. (2014) Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector. Appl Phys Lett 104

    Google Scholar 

  58. Scofield JH (1994) Frequency-domain description of a lock-in amplifier 62:129–133

    Google Scholar 

  59. Singh J, Wolfe DE (2005) Review nano and macro-structured component fabrication by electron beam-physical vapor deposition (EB-PVD). 40:1–26

    Google Scholar 

  60. Mattox DM (2010) Handbook of physical vapor deposition (PVD) processing (Second Edition) (ed Donald M. Mattox) pp 195–235. William Andrew Publishing

    Google Scholar 

  61. Gambino JP, Colgan EG (1998) Silicides and ohmic contacts. Mater Chem Phys 52:99–146

    Google Scholar 

  62. Lassig SE, Tucker JD (1995) Intermetal dielectric deposition by electron cyclotron resonance chemical vapor deposition (ECR CVD). Microelectron J 26, XI–XXIII

    Google Scholar 

  63. El amrani A et al. (2008) Silicon nitride film for solar cells. Renew Energy 33:2289–2293

    Google Scholar 

  64. Arnaud T et al. (2011) Pixel-to-pixel isolation by deep trench technology: application to CMOS image sensor. IISW Conference at Hokkaido, Japan

    Google Scholar 

  65. Harman GG (2010) Wire bonding in microelectronics 3rd edition. McGraw-Hill Education, 446

    Google Scholar 

  66. Ge X, Mamdy B, Theuwissen A (2016) A comparative noise analysis and measurement for n-type and p-type pixels with CMS technique. Electronic Imaging, Image Sensors and Imaging Systems 2016, pp. 1–6(6)

    Google Scholar 

  67. Goiffon V et al. (2014) Pixel level characterization of pinned photodiode and transfer gate physical Parameters in CMOS image sensors. Ieee J Electron Devi 2:65–76

    Google Scholar 

  68. Wang F, Theuwissen AJP (2019) Pixel optimizations and digital calibration methods of a CMOS image sensor Targeting high linearity. IEEE Trans Circuits Syst I: Regul Pap 66:930–940

    Google Scholar 

  69. Theuwissen A (2007) CMOS image sensors: State-of-the-art and future perspectives. Proc Eur S-State Dev, 21- + 

    Google Scholar 

  70. Janesick JR (2007) Photon transfer. Spie Press Book

    Google Scholar 

  71. Hornsey RI (2008) Noise in image sensors. University of Waterloo Prints

    Google Scholar 

  72. Mamdy B (2016) Nouvelle architecture de pixel CMOS éclairé par la face arrière, intégrant une photodiode à collection de trous et une chaine de lecture PMOS pour capteurs d’image en environement ionisant. Thesis dissertation, 161

    Google Scholar 

  73. Gardner D Characterizing digital cameras with the photon transfer curve. https://pdfs.semanticscholar.org/8596/00415df0290714f8d928f40889f4eb6db5a2.pdf

  74. Ortiz-Conde A et al. (2002) A review of recent MOSFET threshold voltage extraction methods. Microelectron Reliab 42:583–596

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Montero Álvarez .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montero Álvarez, D. (2021). Experimental Techniques. In: Near Infrared Detectors Based on Silicon Supersaturated with Transition Metals. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-63826-9_2

Download citation

Publish with us

Policies and ethics