Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 164 Accesses

Abstract

Think about any day in your life. How many of our possessions contain, at least, one microchip that are made of semiconductors? Semiconductors are the enablers of our modern society, being silicon the most important of them. There are many things that can be done with Si chips. Unfortunately, detecting infrared rays, at least at room temperature, is not one of them. In this chapter, we explore the current infrared sensing technology and their limitations. Then, we introduce the concept of supersaturated materials, and how it could be a potential solution for getting faster, cheaper, and more environmentally friendly infrared detectors, based on Si, and operating at room-temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grundmann M (2021) The physics of semiconductors. Springer International Publishing. ISBN: 978-3-030-51568-3

    Google Scholar 

  2. Neamen D (2003) Semiconductor physics and devices. McGraw-Hill. ISBN: 978-0-072-32107-4

    Google Scholar 

  3. Sze SM, Kwok KNg (2007) Physics of semiconductors devices, 3rd edn. Wiley. ISBN: 978-0-471-14323-9

    Google Scholar 

  4. Hook JR, Hall HE (1991) Solid state physics, 2nd edn. Wiley. ISBN: 978-0-471-92805-8

    Google Scholar 

  5. Ashcroft NW, Mermin ND (1976) Solid state physics. Brooks Cole. ISBN: 978-0-030-83993-1

    Google Scholar 

  6. Busch G (1989) Early history of the physics and chemistry of semiconductors-from doubts to fact in a hundred years. Eur J Phys 10:254–264. Doi:10.1088/0143-0807/10/4/002

    Google Scholar 

  7. Emsley J (2003) Book review: nature’s building blocks: an A–Z guide to the elements. Oxford University Press, Oxford

    Google Scholar 

  8. Neamen DA (1997) Semiconductor physics and devices, vol 3. McGraw-Hill, New York

    Google Scholar 

  9. Wolf S (2003) Microchip manufacturing. Lattice Press, pp 584

    Google Scholar 

  10. Friedrich J (2016) Methods for bulk growth of inorganic crystals: crystal growth. Reference Module in Materials Science and Materials Engineering, Elsevier

    Google Scholar 

  11. Reuters (2019) SiC and GaN power devices market size, technology, segmentation, global industry will Register 32.8%CAGR reach US$1780 million in 2019–2024. Reuters https://www.reuters.com/brandfeatures/venture-capital/article?id=100798

  12. Holst A (2019). Semiconductor sales revenue worldwide from 1987 to 2019 (in billion U.S. dollars). Statista https://www.statista.com/statistics/266973/global-semiconductor-sales-since-1988/

  13. Radziemska E (2003) Thermal performance of Si and GaAs based solar cells and modules: a review. Prog Energy Combust Sci 29:407–424. Doi:10.1016/s0360-1285(03)00032-7

    Google Scholar 

  14. Rogalski A (2012) History of infrared detectors. Opto-Electron Rev 20: 279–308

    Google Scholar 

  15. Hulstrom R, Bird R, Riordan C (1985) Spectral solar irradiance data sets for selected terrestrial conditions. Sol Cells 15:365–391

    Google Scholar 

  16. Miller JL (1994) Principles of infrared technolog: a practical guide to the state of the art. Springer 1: 523

    Google Scholar 

  17. Miller JL, Friedman EJ (2003) Photonics rules of thumb, 2nd edn. Spie Press Book

    Google Scholar 

  18. Imaging ES (2018). Short-wave Infrared Imagery (SWIR). European Space Imaging https://www.euspaceimaging.com/wp-content/uploads/2018/06/EUSI-SWIR.pdf, 4

  19. Vatsia ML et al. (1972) Night-sky radiant sterance from 450 to 2000 nanometres. Army Electronics Command. Fort Monmouth, NJ. AD-750 609, 42

    Google Scholar 

  20. Voshell A, Dhar N, Rana MM (2017) Materials for microbolometers: vanadium oxide or silicon derivatives. Proceedings volume 10209, image sensing technologies: materials, devices, systems, and applications IV; 102090 M SPIE

    Google Scholar 

  21. Kadlec EA (2011) Thermal detecting in the long wafe infrared and very long wave infrared regions. PhD dissertation, 67

    Google Scholar 

  22. Yarris L (2003) Berkeley lab far-infrared detectors in orbit. science Beat berkeley labs. https://www2.lbl.gov/Science-Articles/Archive/SB-MSD-SIRTF.html

  23. Rogalski A (2002) Infrared detectors: an overview. Infrared Phys Techn 43:187–210

    Google Scholar 

  24. Market Study Report LLC (2019) SWIR cameras market size analysis by growth application, segmentation and forecast to 2025. https://www.marketwatch.com/press-release/swir-cameras-market-size-analysis-by-growth-application-segmentation-and-forecast-to-2025-2019-03-13

  25. Yole Développement Reports (2016) Uncooled IR imaging industry: the market is taking off. http://www.yole.fr/UncooledIR_MarketOverview.aspx#.XW7eAy4zaUk

  26. https://www.digitalglobe.com/products/short-wave-infrared

  27. Ngo HT, Tao L, Zhang M, Livingston A, Asari VK (2005) A visibility improvement system for low vision drivers by nonlinear enhancement of fused visible and infrared video. IEEE Computer Society Conference on Computer Vision and Pattern Recognition

    Google Scholar 

  28. Haas H, Yin L, Wang Y, Chen C (2016) What is LiFi? J Light Technol 34:1533–1544

    Google Scholar 

  29. Visible Light Communication. What is visible light communication? http://visiblelightcomm.com/what-is-visible-light-communication-vlc/

  30. Alkholidi AG et al. (2014) Free space optical communication—theory and practices. IntechOpen 55

    Google Scholar 

  31. TechInsights (2017) Cost comparison—Huawei mate 10, iPhone 8, samsung galaxy S8. https://www.techinsights.com/blog/cost-comparison-huawei-mate-10-iphone-8-samsung-galaxy-s8

  32. Dhariwal SR, Ojha VN (1982) Band-gap narrowing in heavily doped silicon. Solid State Electron 25:909–911

    Google Scholar 

  33. Lowney JR (1985) Band-gap narrowing in the space-charge region of heavily doped silicon diodes. Solid State Electron 28:187–191

    Google Scholar 

  34. Mnatsakanov T., Pomortseva LI, Yakovlev DG (1994) Estimate of the effective narrowing of the band-gap in heavily-doped layers of silicon structures. Semicond 28:1059–1061

    Google Scholar 

  35. Matsubara T, Toyozawa Y (1961) Theory of impurity band conduction in semiconductors. Prog Theor Phys 26:739–756

    Google Scholar 

  36. Mott NF, Twose WD (1961) The theory of impurity conduction. Adv Phys 10:107–163

    Google Scholar 

  37. Klaassen DBM, Slotboom JW, de Graaff HC (1992) Unified apparent bandgap narrowing in n- and p-type silicon. Solid-State Electronics 35(2)

    Google Scholar 

  38. Jones SW (2008) Diffusion in silicon. IC Knowledge, LLC

    Google Scholar 

  39. Shalimova KV (1985) Physics of semiconductors. Energoatomizdat, Moscow

    Google Scholar 

  40. Mott NF (1968) Metal-insulator transition. Rev Mod Phys 40(7)

    Google Scholar 

  41. Belitz D, Kirkpatrick TR (1994) The Anderson-Mott transition. Rev Mod Phys 66:261–380

    Google Scholar 

  42. Luque A, Marti A (1997) Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys Rev Lett 78:5014–5017

    Google Scholar 

  43. Olea J et al. (2010) High quality Ti-implanted Si layers above the Mott limit. J Appl Phys 107

    Google Scholar 

  44. Schibli E, Milnes AG (1967) Deep impurities in silicon. Mater Sci Eng 2:173–180

    Google Scholar 

  45. Mott NF (1949) The basis of the electron theory of metals, with special reference to the transition metals. Proc Phys Soc A 62(7)

    Google Scholar 

  46. Newman BK, Sher M-J, Mazur E, Buonassisi T (2011) Reactivation of sub-bandgap absorption in chalcogen-hyperdoped silicon. App Phys Let 98:251905

    Google Scholar 

  47. Casalino M, Coppola G, Iodice et al. (2010) Near-Infrared sub-Bandgap all-silicon photodetectors: state of the art and perspectives. Sensors 10:10571–10600

    Google Scholar 

  48. Olea J (2009) Procesos de implantación iónica para semiconductores de banda intermedia. Thesis dissertation

    Google Scholar 

  49. Gonzalez-Diaz G et al. (2009) Intermediate band mobility in heavily titanium-doped silicon layers. Sol Energ Mat Sol C 93:1668–1673

    Google Scholar 

  50. Olea J, Gonzalez-Diaz G, Pastor D, Martil I (2009) Electronic transport properties of ti-impurity band in Si. J Phys D Appl Phys 42

    Google Scholar 

  51. Olea J et al. (2009) High quality Ti-implanted Si layers above solid solubility limit. Proceedings of the 2009 Spanish conference on electron devices, pp 38–41

    Google Scholar 

  52. Olea J, Pastor D, Martil I, Gonzalez-Diaz G (2010) Thermal stability of intermediate band behavior in Ti implanted Si. Sol Energ Mat Sol C 94:1907–1911

    Google Scholar 

  53. Pastor D et al. (2011) UV and visible Raman scattering of ultraheavily Ti implanted Si layers for intermediate band formation. Semicond Sci Tech 26

    Google Scholar 

  54. Olea J, Pastor D, Toledano-Luque M, Martil I, Gonzalez-Diaz G (2011) Depth profile study of Ti implanted Si at very high doses. J Appl Phys 110

    Google Scholar 

  55. Olea J, del Prado A, Pastor D, Martil I, Gonzalez-Diaz G (2011) Sub-bandgap absorption in Ti implanted Si over the Mott limit. J Appl Phys 109

    Google Scholar 

  56. Olea J et al. (2011) Two-layer hall effect model for intermediate band Ti-implanted silicon. J Appl Phys 109

    Google Scholar 

  57. Pastor D et al. (2012) Insulator to metallic transition due to intermediate band formation in Ti-implanted silicon. Sol Energ Mat Sol C 104:159–164

    Google Scholar 

  58. Olea J et al. (2012) Low temperature intermediate band metallic behavior in Ti implanted Si. Thin Solid Films 520:6614–6618

    Google Scholar 

  59. Mathiot D, Hocine S (1989) Titanium-related deep levels in silicon—a reexamination. J Appl Phys 66:5862–5867

    Google Scholar 

  60. Hocine SAMD (1988) Titanium diffusion in silicon. Appl Phys Lett 53:3

    Google Scholar 

  61. Ertekin E et al. (2012) Insulator-to-metal transition in selenium-hyperdoped silicon: observation and origin. Phys Rev Lett 108

    Google Scholar 

  62. Mailoa JP et al. (2014) Room-temperature sub-band gap optoelectronic response of hyperdoped silicon. Nat Commun 5

    Google Scholar 

  63. Franta B et al. (2015) Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing. J Appl Phys 118

    Google Scholar 

  64. Yang W et al. (2017) Au-rich filamentary behavior and associated subband gap optical absorption in hyperdoped Si. Phy Rev Mater 1

    Google Scholar 

  65. Liu F et al. (2017) Realizing the insulator-to-metal transition in Se-hyperdoped Si via non-equilibrium material processing. J Phys D Appl Phys 50

    Google Scholar 

  66. Liu F et al. (2018) On the insulator-to-metal transition in titanium-implanted silicon. Sci Rep-Uk 8

    Google Scholar 

  67. Jones RC (1957) Quantum efficiency of photoconductors. Proc. IRIS 2

    Google Scholar 

  68. Jones RC (1960) Proposal of the detectivity D* for detectors limited by radiation noise. J Opt Soc Am 50:1058–1059

    Google Scholar 

  69. Baunmann PR (2009) History of remote sensing, satellite imagery. Department of geography, State University of New York College, Oneonta. http://employees.oneonta.edu/baumanpr/geosat2/RS%20History%20II/RS-History-Part-2.html

  70. Vick CP (2007) KH-11 reconnaissance imaging spacecraft. Globalsecurity.org https://www.globalsecurity.org/space/systems/kh-11.htm

  71. Graf RF (1999) Modern dictionary of electronics 7th edition, p 869. Newnes Elsevier

    Google Scholar 

  72. Janesick JR (2001) Scientific charge-coupled devices. Spie Press Book 1:920

    Google Scholar 

  73. Digital Kamera Musseum (2015) Dycam Model 1 (1990). https://www.digitalkameramuseum.de/en/cameras/item/model-1

  74. Fowler BLX, Vu P (2006) CMOS image sensors—past present and future. Society for imaging science and technology ICIS ‘06 international congress of imaging science, 8

    Google Scholar 

  75. Theuwissen AJP (2008) CMOS image sensors: State-of-the-art. Solid State Electron 52:1401–1406

    Google Scholar 

  76. Gartner (2019) Gartner says worldwide semiconductor revenue grew 13.4 percent in 2018; increase driven by memory market. https://www.gartner.com/en/newsroom/press-releases/2019-01-07-gartner-says-worldwide-semiconductor-revenue-grew-13

  77. Garcia-Hemme E (2015) Respuesta infrarroja en silicio mediante implantación iónica de metales de transición. Thesis dissertation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Montero Álvarez .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montero Álvarez, D. (2021). Introduction. In: Near Infrared Detectors Based on Silicon Supersaturated with Transition Metals. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-63826-9_1

Download citation

Publish with us

Policies and ethics