Skip to main content

Adaptive Neural Control for Efficient Rhythmic Movement Generation and Online Frequency Adaptation of a Compliant Robot Arm

Part of the Communications in Computer and Information Science book series (CCIS,volume 1333)

Abstract

In this paper, we propose an adaptive and simple neural control approach for a robot arm with soft/compliant materials, called GummiArm. The control approach is based on a minimal two-neuron oscillator network (acting as a central pattern generator) and an error-based dual integral learning (DIL) method for efficient rhythmic movement generation and frequency adaptation, respectively. By using this approach, we can precisely generate rhythmic motion for GummiArm and allow it to quickly adapt its motion to handle physical and environmental changes as well as interacting with a human safely. Experimental results for GummiArm in different scenarios (e.g., dealing with different joint stiffnesses, working against elastic loads, and interacting with a human) are provided to illustrate the effectiveness of the proposed adaptive neural control approach.

Keywords

  • Adaptive robot behavior
  • Soft robot
  • Human-machine interaction
  • Artificial intelligence

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-63823-8_79
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-63823-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. Dallali, H., Medrano-Cerda, G., Kashiri, N., Tsagarakis, N., Caldwell, D.: Decentralized feedback design for a compliant robot arm. In: Modelling Symposium (EMS), 2014 European, pp. 269–274. IEEE (2014)

    Google Scholar 

  2. Jouaiti, M., Caron, L., Hénaff, P.: Hebbian plasticity in CPG controllers facilitates self-synchronization for human-robot handshaking. Front. Neurorobotics 12, 29 (2018)

    CrossRef  Google Scholar 

  3. Kulvicius, T., Ning, K., Tamosiunaite, M., Wörgötter, F.: Joining movement sequences: Modified dynamic movement primitives for robotics applications exemplified on handwriting. IEEE Trans. Robot. 28(1), 145–157 (2012)

    CrossRef  Google Scholar 

  4. Pasemann, F., Hild, M., Zahedi, K.: SO(2)-networks as neural oscillators. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2686, pp. 144–151. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44868-3_19

    CrossRef  Google Scholar 

  5. Stoelen, M.F., Bonsignorio, F., Cangelosi, A.: Co-exploring actuator antagonism and bio-inspired control in a printable robot arm. In: Tuci, E., Giagkos, A., Wilson, M., Hallam, J. (eds.) SAB 2016. LNCS (LNAI), vol. 9825, pp. 244–255. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43488-9_22

    CrossRef  Google Scholar 

  6. Thor, M., Manoonpong, P.: Error-based learning mechanism for fast online adaptation in robot motor control. IEEE Trans. Neural Networks Learn. Syst. 31, 1–10 (2019). https://doi.org/10.1109/TNNLS.2019.2927737

  7. Thor, M., Manoonpong, P.: A fast online frequency adaptation mechanism for CPG-based robot motion control. IEEE Rob. Autom. Lett. 4(4), 3324–3331 (2019)

    CrossRef  Google Scholar 

  8. Wang, R., Dai, Y.: The anthropomorphic robot arm joint control parameter tuning based on Ziegler Nichols PID. In: 2015 3rd International Conference on Mechanical Engineering and Intelligent Systems. Atlantis Press (2015). https://doi.org/10.2991/icmeis-15.2015.27

  9. Wang, Y., Xue, X., Chen, B.: Matsuoka’s CPG with desired rhythmic signals for adaptive walking of humanoid robots. IEEE Trans. Cybern. 50, 1–14 (2018). https://doi.org/10.1109/TCYB.2018.2870145

  10. Weiss, A., Buchner, R., Tscheligi, M., Fischer, H.: Exploring human-robot cooperation possibilities for semiconductor manufacturing. In: 2011 International Conference on Collaboration Technologies and Systems (CTS), pp. 173–177. IEEE (2011)

    Google Scholar 

Download references

Acknowledgements

We thank Martin Stoelen to provide the technical details of GummiArm. This research was supported by Center for BioRobotics at the University of Southern Denmark and VISTEC-research funding on Bio-inspired Robotics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poramate Manoonpong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Degroote, F., Thor, M., Ignasov, J., Larsen, J.C., Motoasca, E., Manoonpong, P. (2020). Adaptive Neural Control for Efficient Rhythmic Movement Generation and Online Frequency Adaptation of a Compliant Robot Arm. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1333. Springer, Cham. https://doi.org/10.1007/978-3-030-63823-8_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63823-8_79

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63822-1

  • Online ISBN: 978-3-030-63823-8

  • eBook Packages: Computer ScienceComputer Science (R0)