Skip to main content

A Novel Multi-step Finite-State Automaton for Arbitrarily Deterministic Tsetlin Machine Learning

  • Conference paper
  • First Online:
Artificial Intelligence XXXVII (SGAI 2020)

Abstract

Due to the high energy consumption and scalability challenges of deep learning, there is a critical need to shift research focus towards dealing with energy consumption constraints. Tsetlin Machines (TMs) are a recent approach to machine learning that has demonstrated significantly reduced energy usage compared to neural networks alike, while performing competitively accuracy-wise on several benchmarks. However, TMs rely heavily on energy-costly random number generation to stochastically guide a team of Tsetlin Automata (TA) to a Nash Equilibrium of the TM game. In this paper, we propose a novel finite-state learning automaton that can replace the TA in TM learning, for increased determinism. The new automaton uses multi-step deterministic state jumps to reinforce sub-patterns. Simultaneously, flipping a coin to skip every d’th state update ensures diversification by randomization. The d-parameter thus allows the degree of randomization to be finely controlled. E.g., \(d=1\) makes every update random and \(d=\infty \) makes the automaton completely deterministic. Our empirical results show that, overall, only substantial degrees of determinism reduces accuracy. Energy-wise, random number generation constitutes switching energy consumption of the TM, saving up to 11 mW power for larger datasets with high d values. We can thus use the new d-parameter to trade off accuracy against energy consumption, to facilitate low-energy machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An implementation of ADTM can be found at https://github.com/cair/Deterministic-Tsetlin-Machine.

  2. 2.

    Available from https://archive.ics.uci.edu/ml/datasets/qualitative_bankruptcy.

  3. 3.

    Available from http://archive.ics.uci.edu/ml/datasets/balance+scale.

  4. 4.

    Available from https://archive.ics.uci.edu/ml/datasets/Breast+Cancer.

  5. 5.

    Available from https://archive.ics.uci.edu/ml/datasets/Liver+Disorders.

  6. 6.

    Available from https://archive.ics.uci.edu/ml/datasets/Statlog+%28Heart%29.

References

  1. Abeyrathna, K.D., Granmo, O.C., Goodwin, M.: Extending the Tsetlin Machine with integer-weighted clauses for increased interpretability. arXiv preprint arXiv:2005.05131 (2020)

  2. Abeyrathna, K.D., Granmo, O.-C., Zhang, X., Goodwin, M.: A scheme for continuous input to the Tsetlin Machine with applications to forecasting disease outbreaks. In: Wotawa, F., Friedrich, G., Pill, I., Koitz-Hristov, R., Ali, M. (eds.) IEA/AIE 2019. LNCS (LNAI), vol. 11606, pp. 564–578. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22999-3_49

    Chapter  Google Scholar 

  3. Abeyrathna, K.D., Granmo, O.C., Zhang, X., Jiao, L., Goodwin, M.: The regression Tsetlin Machine - a novel approach to interpretable non-linear regression. Philos. Trans. R. Soc. A 378, 20190165 (2019)

    Article  Google Scholar 

  4. Berge, G.T., Granmo, O.C., Tveit, T.O., Goodwin, M., Jiao, L., Matheussen, B.V.: Using the Tsetlin Machine to learn human-interpretable rules for high-accuracy text categorization with medical applications. IEEE Access 7, 115134–115146 (2019). https://doi.org/10.1109/ACCESS.2019.2935416

    Article  Google Scholar 

  5. Chen, J., Ran, X.: Deep learning with edge computing: a review. Proc. IEEE 107(8), 1655–1674 (2019)

    Article  Google Scholar 

  6. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  7. García-Martín, E., Rodrigues, C.F., Riley, G., Grahn, H.: Estimation of energy consumption in machine learning. J. Parallel Distrib. Comput. 134, 75–88 (2019). https://doi.org/10.1016/j.jpdc.2019.07.007

    Article  Google Scholar 

  8. Rahimi Gorji, S., Granmo, O.-C., Glimsdal, S., Edwards, J., Goodwin, M.: Increasing the inference and learning speed of Tsetlin Machines with clause indexing. In: Fujita, H., Fournier-Viger, P., Ali, M., Sasaki, J. (eds.) IEA/AIE 2020. LNCS (LNAI), vol. 12144, pp. 695–708. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55789-8_60

    Chapter  Google Scholar 

  9. Rahimi Gorji, S., Granmo, O.-C., Phoulady, A., Goodwin, M.: A Tsetlin Machine with multigranular clauses. In: Bramer, M., Petridis, M. (eds.) SGAI 2019. LNCS (LNAI), vol. 11927, pp. 146–151. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34885-4_11

    Chapter  Google Scholar 

  10. Granmo, O.C.: The Tsetlin Machine - a game theoretic bandit driven approach to optimal pattern recognition with propositional logic. arXiv:1804.01508

  11. Granmo, O.C., Glimsdal, S., Jiao, L., Goodwin, M., Omlin, C.W., Berge, G.T.: The convolutional Tsetlin Machine. arXiv preprint arXiv:1905.09688 (2019)

  12. McDermott, J., Forsyth, R.S.: Diagnosing a disorder in a classification benchmark. Pattern Recogn. Lett. 73, 41–43 (2016)

    Article  Google Scholar 

  13. Narendra, K.S., Thathachar, M.A.: Learning Automata: An Introduction. Courier Corporation, North Chelmsford (2012)

    Google Scholar 

  14. Nori, H., Jenkins, S., Koch, P., Caruana, R.: InterpretML: a unified framework for machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019)

  15. Oommen, B.J.: Stochastic searching on the line and its applications to parameter learning in nonlinear optimization. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 27(4), 733–739 (1997)

    Article  MathSciNet  Google Scholar 

  16. Phoulady, A., Granmo, O.C., Gorji, S.R., Phoulady, H.A.: The weighted Tsetlin Machine: compressed representations with clause weighting. In: Ninth International Workshop on Statistical Relational AI (StarAI 2020) (2020)

    Google Scholar 

  17. Shafik, R., Wheeldon, A., Yakovlev, A.: Explainability and dependability analysis of learning automata based AI hardware. In: IEEE 26th International Symposium on On-Line Testing and Robust System Design (IOLTS). IEEE (2020)

    Google Scholar 

  18. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for deep learning in NLP. In: ACL (2019)

    Google Scholar 

  19. Thathachar, M.A.L., Sastry, P.S.: Networks of Learning Automata: Techniques for Online Stochastic Optimization. Kluwer Academic Publishers, Dordrecht (2004)

    Book  Google Scholar 

  20. Tsetlin, M.L.: On behaviour of finite automata in random medium. Avtomat. i Telemekh 22(10), 1345–1354 (1961)

    Google Scholar 

  21. Wheeldon, A., Shafik, R., Rahman, T., Lei, J., Yakovlev, A., Granmo, O.C.: Learning automata based energy-efficient AI hardware design for IoT. Philos. Trans. R. Soc. A 378, 20190593 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the contributions from Jonathan Edwards at Temporal Computing on strategies for deterministic Tsetlin Machine learning.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Darshana Abeyrathna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abeyrathna, K.D. et al. (2020). A Novel Multi-step Finite-State Automaton for Arbitrarily Deterministic Tsetlin Machine Learning. In: Bramer, M., Ellis, R. (eds) Artificial Intelligence XXXVII. SGAI 2020. Lecture Notes in Computer Science(), vol 12498. Springer, Cham. https://doi.org/10.1007/978-3-030-63799-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63799-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63798-9

  • Online ISBN: 978-3-030-63799-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics