Abstract
Information overload is a well-known problem that generally occurs when searching for information online. To reduce this effect having prior knowledge on the domain and also a searching strategy is critical. Obtaining such qualities can be challenging for students since they are still learning about various domains and might not be familiar with the domain-specific keywords. In this paper, we are proposing a framework that aims to assist students to have a richer list of keyphrases that are pertinent to a domain under study and provide a mechanism for lectures to understand what search strategies their students are adopting. The proposed framework includes a Google Chrome Extension, a background and a remote server. The Google Chrome Extension is utilized to collect, process browsing data and generate reports containing keyphrases searched by students. The results of the user evaluation were compared with a similar framework (TextRank). The results indicate that our framework performed better in terms of accuracy of keyphrases and response time.
Keywords
- Searching strategy
- Keyphrase extraction
- Exposing knowledge
This is a preview of subscription content, access via your institution.
Buying options





References
Maes, P.: Agents that reduce work and information overload. Commun. ACM 37, 30–40 (1994). https://doi.org/10.1145/176789.176792
Kilbride, J., Mangina, E.: Automated keyphrase extraction: assisting students in the search for online materials. In: Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A. (eds.) AWIC 2005. LNCS (LNAI), vol. 3528, pp. 225–230. Springer, Heidelberg (2005). https://doi.org/10.1007/11495772_35
Usta, A., Altingovde, I.S., Vidinli, I.B., Ozcan, R., Ulusoy, Ö.: How K-12 students search for learning? Analysis of an educational search engine log. In: SIGIR 2014 - Proceedings of 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1151–1154. ACM (2014). https://doi.org/10.1145/2600428.2609532
Barr, E., Bird, C., Hyatt, E., Menzies, T., Robles, G.: On the shoulders of giants. In: Proceedings of FSE/SDP Workshop on Future of Software Engineering Research FoSER 2010, vol. 41(4), pp. 23–27 (2010). https://doi.org/10.1145/1882362.1882368
Sheeja, N.K.: An analytical study of medical students’ interaction with internet and online resources. Int. J. Inf. Dissem. Technol. 5(3), 167–170 (2015)
Kroustallaki, D., Kokkinaki, T., Sideridis, G.D., Simos, P.G.: Exploring students’ affect and achievement goals in the context of an intervention to improve web searching skills. Comput. Hum. Behav. 49, 156–170 (2015). https://doi.org/10.1016/j.chb.2015.02.060
Wu, D., Cai, W.: An empirical study on Chinese adolescents’ web search behavior. J. Doc. 72, 435–453 (2016). https://doi.org/10.1108/JD-04-2015-0047
Zhou, M.: SCOOP: a measurement and database of student online search behavior and performance. Brit. J. Educ. Technol. 46(5), 928–931 (2015). https://doi.org/10.1111/bjet.12290
Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevill-Manning, C.G.: KEA: Practical automated keyphrase extraction. In: Design and Usability of Digital Libraries: Case Studies in the Asia Pacific, pp. 129–152. IGI Global (2005)
Monchaux, S., Amadieu, F., Chevalier, A., Mariné, C.: Query strategies during information searching: effects of prior domain knowledge and complexity of the information problems to be solved. Inf. Process. Manag. 51(5), 557–569 (2015). https://doi.org/10.1016/j.ipm.2015.05.004
Sanchiz, M., Chin, J., Chevalier, A., Fu, W.T., Amadieu, F., He, J.: Searching for information on the web: impact of cognitive aging, prior domain knowledge and complexity of the search problems. Inf. Process. Manag. 53(1), 281–294 (2017). https://doi.org/10.1016/j.ipm.2016.09.003
Chen, K.T.C.: University EFL students’ use of online English information searching strategy. Iran. J. Lang. Teach. Res. 8(1), 111–127 (2020)
Tsai, M.J.: Online Information Searching Strategy Inventory (OISSI): a quick version and a complete version. Comput. Educ. 53(2), 473–483 (2009). https://doi.org/10.1016/j.compedu.2009.03.006
Zammit, O., Smith, S., De Raffaele, C., Petridis, M.: Exposing knowledge: providing a real-time view of the domain under study for students. In: Bramer, M., Petridis, M. (eds.) SGAI 2019. LNCS (LNAI), vol. 11927, pp. 122–135. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34885-4_9
Ribeiro, J., Henrique, J., Ribeiro, R., Neto, R.: NoSQL vs relational database: a comparative study about the generation of the most frequent N-grams. In: 2017 4th International Conference on System and Informatics, ICSAI 2017, vol. 2018-January, pp. 1568–1572. Institute of Electrical and Electronics Engineers Inc., June 2017. https://doi.org/10.1109/ICSAI.2017.8248535
Ahmad, A., Rub Talha, M., Ruhul Amin, M., Chowdhury, F.: Pipilika N-Gram viewer: an efficient large scale N-Gram model for Bengali. In: 2018 International Conference on Bangla Speech and Language Processing, ICBSLP 2018. Institute of Electrical and Electronics Engineers Inc., November 2018. https://doi.org/10.1109/ICBSLP.2018.8554474
Gledec, G., Soic, R., Dembitz, S.: Dynamic N-Gram system based on an online croatian spellchecking service. IEEE Access 7, 149988–149995 (2019). https://doi.org/10.1109/ACCESS.2019.2947898
Irfan, R., Khan, S., Khan, I.A., Ali, M.A.: KeaKAT - an online automatic keyphrase assignment tool. In: Proceedings of 10th International Conference on Frontiers of Information Technology FIT 2012, pp. 30–34 (2012). https://doi.org/10.1109/FIT.2012.14
Mihalcea, R.: Graph-based ranking algorithms for sentence extraction, applied to text summarization. In: Proceedings of EMNLP, vol. 85, p. 20 (2004). https://doi.org/10.3115/1219044.1219064
Kim, J.Y., Collins-Thompson, K., Bennett, P.N., Dumais, S.T.: Characterizing web content, user interests, and search behavior by reading level and topic. In: WSDM 2012 - Proceedings of 5th ACM International Conference on Web Search Data Mining, pp. 213–222. ACM, New York (2012). https://doi.org/10.1145/2124295.2124323
Chaithanya, K., Reddy, P.V.: A novel approach for document clustering using concept extraction. Int. J. Innov. Res. Adv. Eng. 3 (2016)
Mesquita, D.P.P., Gomes, J.P.P., Souza Junior, A.H., Nobre, J.S.: Euclidean distance estimation in incomplete datasets. Neurocomputing 248, 11–18 (2017)
Niwattanakul, S., Singthongchai, J., Naenudorn, E., Wanapu, S.: Using of Jaccard coefficient for keywords similarity. Lect. Notes Eng. Comput. Sci. 1, 380–384 (2013)
Flowers, C., Mansour, A., Al-Khateeb, H.M.: Web browser artefacts in private and portable modes: a forensic investigation. Int. J. Electron. Secur. Digit. Forensics 8(2), 99–117 (2016). https://doi.org/10.1504/IJESDF.2016.075583
Fan, J., Fan, Y.: HIGH-Dimensional classification using features annealed independence rules. Ann. Stat. 36(6), 2605–2637 (2008). https://doi.org/10.1214/07-AOS504
Havrlant, L., Kreinovich, V.: A simple probabilistic explanation of term frequency-inverse document frequency (TF-IDF) heuristic (and variations motivated by this explanation). Int. J. Gen. Syst. 46(1), 27–36 (2017). https://doi.org/10.1080/03081079.2017.1291635
Joorabchi, A., Mahdi, A.E.: Automatic subject metadata generation for scientific documents using Wikipedia and genetic algorithms. In: ten Teije, A., et al. (eds.) EKAW 2012. LNCS (LNAI), vol. 7603, pp. 32–41. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33876-2_6
Gollapalli, S.D., Caragea, C.: Extracting keyphrases from research papers using citation networks. In: Proceedings of the National Conference on Artificial Intelligence, vol. 2, pp. 1629–1635 (2014)
Hulth, A.: Improved automatic keyword extraction given more linguistic knowledge. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, EMNLP 2003, pp. 216–223. Association for Computational Linguistics (2003). https://doi.org/10.3115/1119355.1119383
Aquino, G., Lanzarini, L.: Keyword identification in Spanish documents using neural networks. J. Comput. Sci. Technol. 15(2), 55–60 (2015)
Kim, S.N., Medelyan, O., Kan, M.Y., Baldwin, T.: SemEval-2010 task 5: automatic keyphrase extraction from scientific articles. In: ACL 2010 - SemEval 2010–5th Proceedings of International Workshop on Semantic Evaluation, pp. 21–26. Association for Computational Linguistics (2010)
Krapivin, M.: Large Dataset for Keyphrase Extraction. Technical Report May 2008, University of Trento (2008)
Nguyen, T.D., Kan, M.-Y.: Keyphrase extraction in scientific publications. In: Goh, D.H.-L., Cao, T.H., Sølvberg, I.T., Rasmussen, E. (eds.) ICADL 2007. LNCS, vol. 4822, pp. 317–326. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77094-7_41
Schutz, A.T.: Keyphrase extraction from single documents in the open domain exploiting linguistic and statistical methods.Master of Applied Science (MAppSc) (2008)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zammit, O., Smith, S., Windridge, D., De Raffaele, C. (2020). Exposing Students to New Terminologies While Collecting Browsing Search Data (Best Technical Paper). In: Bramer, M., Ellis, R. (eds) Artificial Intelligence XXXVII. SGAI 2020. Lecture Notes in Computer Science(), vol 12498. Springer, Cham. https://doi.org/10.1007/978-3-030-63799-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-63799-6_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63798-9
Online ISBN: 978-3-030-63799-6
eBook Packages: Computer ScienceComputer Science (R0)