Skip to main content

Exposing Students to New Terminologies While Collecting Browsing Search Data (Best Technical Paper)

Part of the Lecture Notes in Computer Science book series (LNAI,volume 12498)


Information overload is a well-known problem that generally occurs when searching for information online. To reduce this effect having prior knowledge on the domain and also a searching strategy is critical. Obtaining such qualities can be challenging for students since they are still learning about various domains and might not be familiar with the domain-specific keywords. In this paper, we are proposing a framework that aims to assist students to have a richer list of keyphrases that are pertinent to a domain under study and provide a mechanism for lectures to understand what search strategies their students are adopting. The proposed framework includes a Google Chrome Extension, a background and a remote server. The Google Chrome Extension is utilized to collect, process browsing data and generate reports containing keyphrases searched by students. The results of the user evaluation were compared with a similar framework (TextRank). The results indicate that our framework performed better in terms of accuracy of keyphrases and response time.


  • Searching strategy
  • Keyphrase extraction
  • Exposing knowledge

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-63799-6_1
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-63799-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1.

  2. 2.

  3. 3.

  4. 4.

  5. 5.

  6. 6.


  1. Maes, P.: Agents that reduce work and information overload. Commun. ACM 37, 30–40 (1994).

    CrossRef  Google Scholar 

  2. Kilbride, J., Mangina, E.: Automated keyphrase extraction: assisting students in the search for online materials. In: Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A. (eds.) AWIC 2005. LNCS (LNAI), vol. 3528, pp. 225–230. Springer, Heidelberg (2005).

    CrossRef  Google Scholar 

  3. Usta, A., Altingovde, I.S., Vidinli, I.B., Ozcan, R., Ulusoy, Ö.: How K-12 students search for learning? Analysis of an educational search engine log. In: SIGIR 2014 - Proceedings of 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1151–1154. ACM (2014).

  4. Barr, E., Bird, C., Hyatt, E., Menzies, T., Robles, G.: On the shoulders of giants. In: Proceedings of FSE/SDP Workshop on Future of Software Engineering Research FoSER 2010, vol. 41(4), pp. 23–27 (2010).

  5. Sheeja, N.K.: An analytical study of medical students’ interaction with internet and online resources. Int. J. Inf. Dissem. Technol. 5(3), 167–170 (2015)

    Google Scholar 

  6. Kroustallaki, D., Kokkinaki, T., Sideridis, G.D., Simos, P.G.: Exploring students’ affect and achievement goals in the context of an intervention to improve web searching skills. Comput. Hum. Behav. 49, 156–170 (2015).

    CrossRef  Google Scholar 

  7. Wu, D., Cai, W.: An empirical study on Chinese adolescents’ web search behavior. J. Doc. 72, 435–453 (2016).

    CrossRef  Google Scholar 

  8. Zhou, M.: SCOOP: a measurement and database of student online search behavior and performance. Brit. J. Educ. Technol. 46(5), 928–931 (2015).

    CrossRef  Google Scholar 

  9. Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevill-Manning, C.G.: KEA: Practical automated keyphrase extraction. In: Design and Usability of Digital Libraries: Case Studies in the Asia Pacific, pp. 129–152. IGI Global (2005)

    Google Scholar 

  10. Monchaux, S., Amadieu, F., Chevalier, A., Mariné, C.: Query strategies during information searching: effects of prior domain knowledge and complexity of the information problems to be solved. Inf. Process. Manag. 51(5), 557–569 (2015).

    CrossRef  Google Scholar 

  11. Sanchiz, M., Chin, J., Chevalier, A., Fu, W.T., Amadieu, F., He, J.: Searching for information on the web: impact of cognitive aging, prior domain knowledge and complexity of the search problems. Inf. Process. Manag. 53(1), 281–294 (2017).

    CrossRef  Google Scholar 

  12. Chen, K.T.C.: University EFL students’ use of online English information searching strategy. Iran. J. Lang. Teach. Res. 8(1), 111–127 (2020)

    Google Scholar 

  13. Tsai, M.J.: Online Information Searching Strategy Inventory (OISSI): a quick version and a complete version. Comput. Educ. 53(2), 473–483 (2009).

    CrossRef  MathSciNet  Google Scholar 

  14. Zammit, O., Smith, S., De Raffaele, C., Petridis, M.: Exposing knowledge: providing a real-time view of the domain under study for students. In: Bramer, M., Petridis, M. (eds.) SGAI 2019. LNCS (LNAI), vol. 11927, pp. 122–135. Springer, Cham (2019).

    CrossRef  Google Scholar 

  15. Ribeiro, J., Henrique, J., Ribeiro, R., Neto, R.: NoSQL vs relational database: a comparative study about the generation of the most frequent N-grams. In: 2017 4th International Conference on System and Informatics, ICSAI 2017, vol. 2018-January, pp. 1568–1572. Institute of Electrical and Electronics Engineers Inc., June 2017.

  16. Ahmad, A., Rub Talha, M., Ruhul Amin, M., Chowdhury, F.: Pipilika N-Gram viewer: an efficient large scale N-Gram model for Bengali. In: 2018 International Conference on Bangla Speech and Language Processing, ICBSLP 2018. Institute of Electrical and Electronics Engineers Inc., November 2018.

  17. Gledec, G., Soic, R., Dembitz, S.: Dynamic N-Gram system based on an online croatian spellchecking service. IEEE Access 7, 149988–149995 (2019).

    CrossRef  Google Scholar 

  18. Irfan, R., Khan, S., Khan, I.A., Ali, M.A.: KeaKAT - an online automatic keyphrase assignment tool. In: Proceedings of 10th International Conference on Frontiers of Information Technology FIT 2012, pp. 30–34 (2012).

  19. Mihalcea, R.: Graph-based ranking algorithms for sentence extraction, applied to text summarization. In: Proceedings of EMNLP, vol. 85, p. 20 (2004).

  20. Kim, J.Y., Collins-Thompson, K., Bennett, P.N., Dumais, S.T.: Characterizing web content, user interests, and search behavior by reading level and topic. In: WSDM 2012 - Proceedings of 5th ACM International Conference on Web Search Data Mining, pp. 213–222. ACM, New York (2012).

  21. Chaithanya, K., Reddy, P.V.: A novel approach for document clustering using concept extraction. Int. J. Innov. Res. Adv. Eng. 3 (2016)

    Google Scholar 

  22. Mesquita, D.P.P., Gomes, J.P.P., Souza Junior, A.H., Nobre, J.S.: Euclidean distance estimation in incomplete datasets. Neurocomputing 248, 11–18 (2017)

    Google Scholar 

  23. Niwattanakul, S., Singthongchai, J., Naenudorn, E., Wanapu, S.: Using of Jaccard coefficient for keywords similarity. Lect. Notes Eng. Comput. Sci. 1, 380–384 (2013)

    Google Scholar 

  24. Flowers, C., Mansour, A., Al-Khateeb, H.M.: Web browser artefacts in private and portable modes: a forensic investigation. Int. J. Electron. Secur. Digit. Forensics 8(2), 99–117 (2016).

    CrossRef  Google Scholar 

  25. Fan, J., Fan, Y.: HIGH-Dimensional classification using features annealed independence rules. Ann. Stat. 36(6), 2605–2637 (2008).

    CrossRef  MathSciNet  MATH  Google Scholar 

  26. Havrlant, L., Kreinovich, V.: A simple probabilistic explanation of term frequency-inverse document frequency (TF-IDF) heuristic (and variations motivated by this explanation). Int. J. Gen. Syst. 46(1), 27–36 (2017).

    CrossRef  MathSciNet  Google Scholar 

  27. Joorabchi, A., Mahdi, A.E.: Automatic subject metadata generation for scientific documents using Wikipedia and genetic algorithms. In: ten Teije, A., et al. (eds.) EKAW 2012. LNCS (LNAI), vol. 7603, pp. 32–41. Springer, Heidelberg (2012).

    CrossRef  Google Scholar 

  28. Gollapalli, S.D., Caragea, C.: Extracting keyphrases from research papers using citation networks. In: Proceedings of the National Conference on Artificial Intelligence, vol. 2, pp. 1629–1635 (2014)

    Google Scholar 

  29. Hulth, A.: Improved automatic keyword extraction given more linguistic knowledge. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, EMNLP 2003, pp. 216–223. Association for Computational Linguistics (2003).

  30. Aquino, G., Lanzarini, L.: Keyword identification in Spanish documents using neural networks. J. Comput. Sci. Technol. 15(2), 55–60 (2015)

    Google Scholar 

  31. Kim, S.N., Medelyan, O., Kan, M.Y., Baldwin, T.: SemEval-2010 task 5: automatic keyphrase extraction from scientific articles. In: ACL 2010 - SemEval 2010–5th Proceedings of International Workshop on Semantic Evaluation, pp. 21–26. Association for Computational Linguistics (2010)

    Google Scholar 

  32. Krapivin, M.: Large Dataset for Keyphrase Extraction. Technical Report May 2008, University of Trento (2008)

    Google Scholar 

  33. Nguyen, T.D., Kan, M.-Y.: Keyphrase extraction in scientific publications. In: Goh, D.H.-L., Cao, T.H., Sølvberg, I.T., Rasmussen, E. (eds.) ICADL 2007. LNCS, vol. 4822, pp. 317–326. Springer, Heidelberg (2007).

    CrossRef  Google Scholar 

  34. Schutz, A.T.: Keyphrase extraction from single documents in the open domain exploiting linguistic and statistical methods.Master of Applied Science (MAppSc) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Omar Zammit , Serengul Smith , David Windridge or Clifford De Raffaele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Zammit, O., Smith, S., Windridge, D., De Raffaele, C. (2020). Exposing Students to New Terminologies While Collecting Browsing Search Data (Best Technical Paper). In: Bramer, M., Ellis, R. (eds) Artificial Intelligence XXXVII. SGAI 2020. Lecture Notes in Computer Science(), vol 12498. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63798-9

  • Online ISBN: 978-3-030-63799-6

  • eBook Packages: Computer ScienceComputer Science (R0)