Abstract
Titanium dioxide (TiO2) is a naturally occurring oxide of titanium. It has a wide range of applications. It has three metastable phases, which can be synthesized easily by chemical routes. Usage of TiO2 in thin-film solar cells has gained much attention in increasing the performance of the cell. The objectives are to harvest the freely available earth’s energy and to gain expertise in yielding a maximum conversion efficiency. Various strategies are employed to face the challenges in improving the efficiency of solar cells. This study provides a broad view of the usage of different forms of TiO2 layers, like nanochannel, porous, nanotubes, and mesoporous layers, in enhancing electron injection between the layers. Various types include photoanodes in thin-film solar cells, perovskite cells, dye-sensitized solar cells, metal oxide solar cells, quantum dot solar cells, and tandem solar cells.
Keywords
- Perovskite solar cells
- Mesopores
- Titanium dioxide
- Efficiency
- Photovoltaics
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Ali AK, Ela SE, Hassoon KI, Ela C, Ahmed DS (2018) Design of high-efficiency tandem dye-sensitized solar cell with two-photoanodes toward the broader light harvesting. Dig J Nanomater Biostruct 13(1):299–305
Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P (2014) Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev 114(19):10095–10130. https://doi.org/10.1021/cr400606n
Baraton M-I (2011) Nano-TiO2 for solar cells and photocatalytic water splitting: scientific and technological challenges for commercialization. Open Nanosci J 5:64–77
Bett AJ, Schulze PSC, Winkler K, Gasparetto J, Ndione PF, Bivour M, Hinsch A, Kohlstä M, Lee S, Mastroianni S, Mundt LE, Mundus M, Reichel C, Richter A, Veit C, Wienands K, Würfel U, Veurmana W, Glunz SW, Hermle M, Goldschmit JC (2017) Low temperature perovskite solar cells with an evaporated TiO2 compact layer for perovskite silicon tandem solar cells. Energy Procedia 124:567–576
Cao Z, Li C, Deng X, Wang S, Yuan Y, Chen Y, Wang Z, Liu Y, Ding L, Hao F (2020) Metal oxides alternatives for efficient electron transport in perovskite solar cells: beyond TiO2 and SnO2. J Mater Chem A. https://doi.org/10.1039/D0TA07282F
Chan S-H, Chang Y-H, Wu M-C (2019) High-performance perovskite solar cells based on low-temperature processed electron extraction layer. 6:57. https://doi.org/10.3389/fmats.2019.00057
Chen C, Yu C, Dai Q, Song H (2015) Radio frequency magnetron sputtering deposition of TiO2 thin films and their perovskite solar cell applications. Sci Rep 5:17684. https://doi.org/10.1038/srep17684
Chen X, Tang LJ, Yang S, Hou Y, Yang HG (2016) A low temperature processed flower-like TiO2 array as an electron transport layer for high-performance perovskite solar cells. J Mater Chem A 4:6521–6526. https://doi.org/10.1039/C6TA00893C
Cheng Z, Lin J (2010) Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. Cryst Eng Comm 12:2646–2662
Chopra KL, Major S, Pandya DK (1983) Transparent conductors–a status review. Thin Solid Films 102(1):1–46
Chopra KL, Paulson PD, Dutta V (2004) Progress in photovoltaics: research and applications. Prog Photovolt Res Appl 12:69–92. https://doi.org/10.1002/pip.541
Das K, Baruah S (2018) Quantum dots for solar energy harvesting. Curr Sci 115(4):25
Diguna LJ, Shen Q, Kobayashi J, Toyoda T (2007) High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl Phys Lett 91:023116. https://doi.org/10.1063/1.2757130
Etgar L (2013) Semiconductor nanocrystals as light harvesters in solar cells. Materials 6(2):445–459. https://doi.org/10.3390/ma6020445
Etgar L, Gao P, Xue Z, Peng Q, Chandiran AK, Liu B, Nazeeruddin MK, Grätzel M (2012) Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 13442:17396–17399. https://doi.org/10.1021/ja307789s
Fan Y-H, Ho C-Y, Chang Y-J (2017) Enhancement of dye-sensitized solar cells efficiency using mixed-phase TiO2 nanoparticles as photoanode. Scanning 7. https://doi.org/10.1155/2017/9152973
Ganguly A, Anjaneyulu O, Ojha K, Ganguli AK (2015) Oxide based nanostructures for photocatalytic and electrocatalytic applications. Cryst Eng Comm 17:8978. https://doi.org/10.1039/C5CE01343G
Ghicov A, Schmuki P (2009) Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem Commun:2791–2808. https://doi.org/10.1039/b822726h
Govindasamy G, Murugasen P, Sagadevan S (2016) Investigations on the synthesis, optical and electrical properties of TiO2 thin films by Chemical Bath Deposition (CBD) method. Materials Research 19(2):413–419. https://doi.org/10.1590/1980-5373-MR-2015-0411
Guijarro N, LanaVillarreal T, MoraSeró I, Bisquert J, Gómez R (2009) CdSe quantum dot sensitized TiO2 electrodes: effect of quantum dot coverage and mode of attachment. J Phys Chem C 113:4208–4214
Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874. https://doi.org/10.1007/s10853-010-5113-0
Hayat A, Erwin A, Putra E, Amaliyah N, Hayase S, Pandey SS (2018) Piper Ornatum and Piper Betle organic dyes for TiO2 and SnO2 dye sensitized solar cells. IOP Conf. Series: Journal of Physics: Conf. Series 979:012062. https://doi.org/10.1088/1742-6596/979/1/012062
Hoye RLZ, Musselman KP, MacManus-Driscoll JL (2013) Research update: doping ZnO and TiO2 for solar cells. Apl Materials 1:060701
Jo MS, Cho JS, Wang XL, Jin EM, Jeong SM, Kang D-W (2019) Improving of the photovoltaic characteristics of dye-sensitized solar cells using a photoelectrode with electrospun porous TiO2 nanofibers. Nanomaterials 9:95. https://doi.org/10.3390/nano9010095
Kanda H, Uzum A, Nishino H, Umeyama T, Imahori H, Ishikawa Y, Uraoka Y, Ito S (2016) Interface optoelectronics engineering for mechanically stacked tandem solar cells based on perovskite and silicon. ACS Appl Mater Interfaces 8:33553–33561. https://doi.org/10.1021/acsami.6b07781
Kanhere P, Chen Z (2014) A review on visible light active perovskite-based photocatalysts. Molecules 19:19995–20022. https://doi.org/10.3390/molecules191219995
Kao LC, Liou YHS, Dong C-L, Yeh P-H, Chen CL (2015) The tandem structure of QD co-sensitized TiO2 nanorod arrays for solar light driven hydrogen generation. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.5b01010
Khalid HM, Pervez MF, Mia MNH, Tayyaba S, Jalal uddin M, Ahamed R, Khan RA, Hoq M, Khan MA, Ahmed F (2017) Annealing temperature effect on structural, morphological and optical parameters of mesoporous TiO2 film photoanode for dye-sensitized solar cell application. Mater Sci-Poland 35(4):868–877. https://doi.org/10.1515/msp-2017-0082
Kim M-H, Kwon Y-U (2011) Semiconducting divalent metal oxides as blocking layer material for SnO2-based dye-sensitized solar cells. J Phys Chem C 115:23120–23125. https://doi.org/10.1021/jp2069978
Kominami H, Kohno M, Kera Y (2000) Synthesis of brookite-type titanium oxide nano-crystals in organic media. J Mater Chem 10:1151–1156. https://doi.org/10.1039/a908528I
Kranz L, Abate A, Feurer T, Fan F, Avancini E, Loeckinger J, Reinhard P, Zakeeruddin SM, Grätzel M, Buecheler S, Tiwari AN (2015) High-efficiency polycrystalline thin film tandem solar cells. J Phys Chem Lett 6:2676. https://doi.org/10.1021/acs.jpclett.5b01108
Kuwahara Y, Yamashita H (2011) Efficient photocatalytic degradation of organics diluted in water and air using TiO2 designed with zeolites and mesoporous silica materials. J Mater Chem 21:2407–2416. https://doi.org/10.1039/c0jm02741c
Lee J-W, Hsieh Y-T, De Marco N, Bae S-H, Han Q, Yang Y (2017) Halide Perovskites for tandem solar cells. J Phys Chem Lett 8:1999–2011. https://doi.org/10.1021/acs.jpclett.7b00374
Li Y, Wang H, Feng Q, Zhou G, Wang Z-S (2013) Gold nanoparticles inlaid TiO2 photoanodes: a superior candidate for high-efficiency dye-sensitized solar cells. Energy Environ Sci 6:2156. https://doi.org/10.1039/c3ee23971c
Li Y, Cooper JK, Liu W, Sutter-Fella CM, Amani M, Beeman JW, Javey A, Ager JW, Liu Y, Toma FM, Sharp ID (2016) Nat Commun 7:12446. https://doi.org/10.1038/ncomms12446
Lim SH, Ritter C, Ping Y, Schreyer M, White TJ (2009) Nonstoichiometry, amorphicity and microstructural evolution during phase transformations of photocatalytic titania powders. J Appl Crystallogr 42:917–924. https://doi.org/10.1107/S0021889809031021
Mao X, Zhou R, Zhang S, Ding L, Wan L, Qin S, Chen Z, Xu J, Miao S (2016) High efficiency dye-sensitized solar cells constructed with composites of TiO2 and the hot-bubbling synthesized ultra-small SnO2 nanocrystals. Sci Rep 6:19390. https://doi.org/10.1038/srep19390
Murugadoss G, Mizuta G, Tanaka S, Nishino H, Umeyama T, Imahori H, Ito S (2014) Double functions of porous TiO2 electrodes on CH3NH3PbI3 perovskite solar cells: enhancement of perovskite crystal transformation and prohibition of short circuiting. APL Mater 2:081511. https://doi.org/10.1063/1.4891597
Nadrah W, Amin M, Zaina Z, Talib ZA, Lim HN, Chang SK (2015) Quantum dot-sensitized solar cell based on nano-TiO2 electrodes. PJSRR 1(1):67–81
Nair S, Peining Z, Babu VJ, Shengyuanc Y, Ramakrishna S (2011) Anisotropic TiO2 nanomaterials in dye-sensitized solar cells. Phys Chem Chem Phys 13:21248–21261. https://doi.org/10.1039/c1cp23085a
Nguyena TT, Patel M, Kim J-W, Lee W, Kim J (2019) Functional TiO2 interlayer for all-transparent metal-oxide photovoltaics. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.152602
Opara Krasovec U, Berginc M, Hocevar M, Topic M (2009) Unique TiO2 paste for high efficiency dye-sensitized solar cells. Sol Energy Mater Sol Cells 93:379–381. https://doi.org/10.1016/j.solmat.2008.11.012
Persson K (2016) Materials data on TiO2 (SG:15) by materials project. United States. https://doi.org/10.17188/1206871
Preparation of Quantum Dot Solar Cell – QDs (2019). https://bohatala.com/preparation-of-quantum-dot-solar-cell-qds/
Pushpa (2015) A study on the role of titanium oxide for solar cell applications. Int J Chem Stud 4(1):134–137
Rath JK (2003) Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications. Sol Energy Mater Sol Cells 76(4):431–487
Reyes-Coronado D, Rodrıguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19:145605. https://doi.org/10.1088/0957-4484/19/14/145605
Sadhanala A, Kumar A, Pathak S, Rao A, Steiner U, Greenham NC, Snaith HJ, Friend RH (2015) Electroluminescence from organometallic lead halide perovskite-conjugated polymer diodes. Adv Electron Mater 1:1500008. https://doi.org/10.1002/aelm.201500008
Salman ON, Agoo IR, Ismail MM (2017) Preparation of the scattering layer based on TiO2 nanotube and their dye sensitized solar cell applications. Appl Phys A Mater Sci Process 123:402. https://doi.org/10.1007/s00339-017-1012-4
Shen H, Omelchenko ST, Jacobs DA, Yalamanchil S, Di Yan YW, Phang P, Duong T, Wu Y, Yin Y, Samundsett C, Peng J, Wu N, White TP, Andersson GG, Lewis NS, Catchpole KR (2018) In situ recombination junction between p-Si and TiO2 enables high-efficiency monolithic perovskite/Si tandem cells. Sci Adv 4:eaau9711
Sheng R, Ho-Baillie AWY, Huang S, Keevers M, Hao X, Jiang L, Cheng Y-B, Green MA (2015) Four-terminal tandem solar cells using CH3NH3PbBr3 by spectrum splitting. J Phys Chem Lett 6:3931–3934. https://doi.org/10.1021/acs.jpclett.5b01608
Shriwastava SK, Singh S (2016) Effect & growth of TiO2 thin films for solar cell applications. Int J Hybrid Inf Technol 9(2):267–274. https://doi.org/10.14257/ijhit.2016.9.2.24
Stapleton A (2017) Technology. https://cosmosmagazine.com/technology/how-solar-cells-turn-sunlight-into-electricity
Su Z, Zhou W (2011) Formation, morphology control and applications of anodic TiO2 nanotube arrays. J Mater Chem 21:8955–8970. https://doi.org/10.1039/c0jm04587j
Su P, Fu W, Yao H, Liu L, Ding D, Feng F, Feng S, Xue Y, Liu X, Yang H (2017) Enhanced photovoltaic properties of perovskite solar cells by TiO2 homogeneous hybrid structure. R Soc Open Sci 4:170942. https://doi.org/10.1098/rsos.170942
Sun Q, Hong Y, Zang T, Liu Q, Yu L, Dong L (2018) The application of heterostructured SrTiO3-TiO2 nanotube arrays in dye-sensitized solar cells. J Electrochem Soc 165(4):H3069–H3075
Sun P-P, Bai L, Kripalani DR, Zhou K (2019) A new carbon phase with direct bandgap and high carrier mobility as electron transport material for perovskite solar cells. npj Comput Mater 9:5
Szindler M, Szindler MM, Boryło P, Jung T (2017) Structure and optical properties of TiO2 thin films deposited by ALD method. Open Phys 15:1067–1071
Varma M (2015) Infrared plastic solar cell: seminar report. Jawaharlal Nehru Technological University, Hyderabad
Wu Y, Yang X, Chen H, Zhang K, Qin C, Liu J, Peng W, Islam A, Bi E, Ye F, Yin M, Zhang P, Han L (2014) Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Appl Phys Express 7:052301. https://doi.org/10.7567/APEX.7.052301
Xia X, Ku Z, Zhou D, Zhong Y, Zhang Y, Wang Y, Huang MJ, Tu J, Fan HJ (2016) Perovskite solar cell powered electrochromic batteries for smart windows. Mater Horiz. https://doi.org/10.1039/c6mh00159a
Yaacob KA, Ishak MN, Alias NN (2013) Quantum dots sensitized solar cell: effect of CdSe nanoparticles purification procedure of QD sensitized photoanodes. J Phys Conf Ser 431:012019. https://doi.org/10.1088/1742-6596/431/1/012019
Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y (2014) Near-band-edge optical responses of solution-processed organic–inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes. Appl Phys Express 7:032302. https://doi.org/10.7567/APEX.7.032302
Yin X, Xu Z, Guo Y, Xu P, He M (2016) Ternary oxides in the TiO2−ZnO system as efficient electron-transport layers for perovskite solar cells with efficiency over 15%. ACS Appl Mater Interfaces 8:29580–29587. https://doi.org/10.1021/acsami.6b09326
Zhang Q, Zhang G, Sun X, Yin K, Li H (2017) Improving the power conversion efficiency of carbon quantum dot-sensitized solar cells by growing the dots on a TiO2 photoanode in situ. Nano 7:130. https://doi.org/10.3390/nano7060130
Zheng YM, Wang Y, Xiao L, Zhang F, Yang H (2017) Hole blocking layer-free perovskite solar cells with over 15% efficiency. Energy Procedia 105:188–193
Zhou R, Zhang Q, Uchaker E, Yang L, Yin N, Chen Y, Yin M, Cao G (2014) Photoanodes with mesoporous TiO2 beads and nanoparticles for enhanced performance of CdS/CdSe quantum dot co-sensitized solar cells. Electrochim Acta 135:284–292
Zie CWS, Zainab N (2017) Incorporation of kojic acid-azo dyes on TiO2 thin films for dye sensitized solar cells applications. J Solar Energy:Article ID 2760301. https://doi.org/10.1155/2017/276030
Zulkefly MYB (2014) A thesis on “Titanium Dioxide (TiO2) as buffer layer in organic solar cell device”
Acknowledgment
One of the authors (Anandhi) greatly acknowledges the support given by the management members of Sathyabama Institute of Science and Technology during this course of work.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Sivaramalingam, A., Thankaraj Salammal, S., Soosaimanickam, A., Sakthivel, T., Paul David, S., Sambandam, B. (2021). Role of TiO2 in Highly Efficient Solar Cells. In: Rajendran, S., Karimi-Maleh, H., Qin, J., Lichtfouse, E. (eds) Metal, Metal-Oxides and Metal Sulfides for Batteries, Fuel Cells, Solar Cells, Photocatalysis and Health Sensors. Environmental Chemistry for a Sustainable World, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-030-63791-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-63791-0_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-63790-3
Online ISBN: 978-3-030-63791-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)