Skip to main content

Spectroelectrochemistry

  • Chapter
  • First Online:
Springer Handbook of Inorganic Photochemistry

Abstract

This chapter provides a brief review of the main spectroelectrochemical techniques most frequently used in inorganic chemistry to study and characterize inorganic soluble species, focusing mainly on coordination and organometallic complexes. To record in a single experiment all spectral changes related to the reactants, products or intermediates generated or consumed while an electrochemical process occurs, is important for a better understanding of chemical systems. The first section shows generalities about spectroelectrochemistry and justifies its usefulness in inorganic chemistry. The second section introduces the main characteristics of UV/Vis/NIR, IR, photoluminescence, and Raman spectroelectrochemistry, while the third section describes the most useful and convenient ways to perform such experiments. In the fourth section different applications, mainly in the research field of coordination and organometallic complexes, are briefly summarized, where the advantages of using this multiresponse technique to study soluble species of these compounds is clearly described. Finally, an overview of potential uses of spectroelectrochemistry in the coming years is presented, where the work of all researchers involved in these two fields, inorganic chemistry and spectroelectrochemistry, will be very important to spread its use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stanbury, M., Compain, J.D., Chardon-Noblat, S.: Electro and photoreduction of CO2 driven by manganese-carbonyl molecular catalysts. Coord. Chem. Rev. 361, 120–137 (2018)

    Google Scholar 

  2. Elliott, R.W., Usov, P.M., Abrahams, B.F., Chan, B., Robson, R., D’Alessandro, D.M., Dcnqi, D.: Interligand charge-transfer interactions in electroactive coordination frameworks based on N, N′-dicyanoquinonediimine (DCNQI). Inorg. Chem. 57, 9766–9774 (2018)

    Article  CAS  PubMed  Google Scholar 

  3. Hildebrandt, A., Lang, H.: (multi)ferrocenyl five-membered heterocycles: excellent connecting units for electron transfer studies. Organometallics. 32, 5640–5653 (2013)

    Article  CAS  Google Scholar 

  4. Plieth, W., Wilson, G.S., Gutierrez De La Fe, C.: Spectroelectrochemistry: a survey of in-situ spectroscopic techniques. Pure Appl. Chem. 70, 1395–1414 (1998)

    Google Scholar 

  5. Keyes, T.E., Forster, R.J.: In: Zoski, C. (ed.) Handbook of Electrochemistry, pp. 591–635. Elsevier B.V, Dublin (2007)

    Chapter  Google Scholar 

  6. León, L., Mozo, J.D.: Designing spectroelectrochemical cells: a review. TrAC Trends Anal. Chem. 102, 147–169 (2018)

    Article  CAS  Google Scholar 

  7. Bizzotto, D.: In-situ spectroelectrochemical fluorescence microscopy for studying electrodes modified by molecular adsorbates. Curr. Opin. Electrochem. 7, 161–171 (2018)

    Google Scholar 

  8. Audebert, P., Miomandre, F.: Electrofluorochromism: from molecular systems to set-up and display. Chem. Sci. 4, 575–584 (2013)

    Article  CAS  Google Scholar 

  9. Crayston, J.A.: Spectroelectrochemistry. Springer US, Boston (1988)

    Google Scholar 

  10. Alkire, R.C., Kolb, D.M., Lipkowski, J., Ross, P.N.: Advances in Electrochemical Science and Engineering, vol. 9, 1st edn. Wiley-VCH Verlag GmbH, Weinheim (2006)

    Book  Google Scholar 

  11. Scherson, D.A., Tolmachev, Y.V., Stefan, I.C.: In: Meyers, R.A. (ed.) Encyclopedia of Analytical Chemistry, pp. 1–54. John Wiley & Sons, Ltd, Chichester (2006)

    Google Scholar 

  12. Kaim, W., Fiedler, J.: Spectroelectrochemistry: the best of two worlds. Chem. Soc. Rev. 38, 3373–3382 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. Falck, D., Niessen, W.M.A.: Solution-phase electrochemistry-nuclear magnetic resonance of small organic molecules. TrAC Trends Anal. Chem. 70, 31–39 (2015)

    Article  CAS  Google Scholar 

  14. Dunsch, L.: Recent advances in in-situ multi-spectroelectrochemistry. J. Solid State Electrochem. 15, 1631–1646 (2011)

    Google Scholar 

  15. Crayston, J.A., Keyes, T.E., Forster, R.J.: Spectroelectrochemistry. Royal Society of Chemistry, Cambridge (2008)

    Google Scholar 

  16. Mortimer, R.J.: In: Lindon, J., Tranter, G.E., Koppenaal, D. (eds.) Encyclopedia of Spectroscopy and Spectrometry, 3rd edn, pp. 172–177. Elsevier (2017)

    Chapter  Google Scholar 

  17. Mortimer, R.J.: In: Lindon, J., Tranter, G.E., Koppenaal, D. (eds.) Encyclopedia of Spectroscopy and Spectrometry, vol. 3, 3rd edn, pp. 160–171. Elsevier (2017)

    Chapter  Google Scholar 

  18. Zhai, Y., Zhu, Z., Zhou, S., Zhu, C., Dong, S.: Recent advances in spectroelectrochemistry. Nanoscale. 10, 3089–3111 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. Garoz-Ruiz, J., Perales-Rondon, J.V., Heras, A., Colina, A.: Spectroelectrochemistry of quantum dots. Isr. J. Chem. 59, 679–694 (2019)

    Article  CAS  Google Scholar 

  20. Garoz-Ruiz, J., Perales-Rondon, J.V., Heras, A., Colina, A.: Spectroelectrochemical sensing: current trends and challenges. Electroanalysis. 31, 1254–1278 (2019)

    Article  CAS  Google Scholar 

  21. Lozeman, J.J.A., Führer, P., Olthuis, W., Odijk, M.: Spectroelectrochemistry, the future of visualizing electrode processes by hyphenating electrochemistry with spectroscopic techniques. Analyst. 145, 2482–2509 (2020)

    Google Scholar 

  22. Kuwana, T., Darlington, R.K., Leedy, D.W.: Electrochemical studies using conducting glass indicator electrodes. Anal. Chem. 36, 2023–2025 (1964)

    Article  CAS  Google Scholar 

  23. Heras, A., Colina, A., Ruiz, V., López-Palacios, J.: UV-visible spectroelectrochemical detection of side-reactions in the hexacyanoferrate(III)/(II) electrode process. Electroanalysis. 15, 702–708 (2003)

    Article  CAS  Google Scholar 

  24. Vogt, S., Schneider, M., Schäfer-Eberwein, H., Nöll, G.: Determination of the pH dependent redox potential of glucose oxidase by spectroelectrochemistry. Anal. Chem. 86, 7530–7535 (2014)

    Article  CAS  PubMed  Google Scholar 

  25. Miesel, D., Hildebrandt, A., Rüffer, T., Schaarschmidt, D., Lang, H.: Electron-transfer studies of trans-platinum bis(acetylide) complexes. Eur. J. Inorg. Chem. 2014, 5541–5553 (2014)

    Article  CAS  Google Scholar 

  26. Zhang, J., Zhang, M.X., Sun, C.F., Xu, M., Hartl, F., Yin, J., Yu, G.A., Rao, L., Liu, S.H.: Diruthenium complexes with bridging diethynyl polyaromatic ligands: synthesis, spectroelectrochemistry, and theoretical calculations. Organometallics. 34, 3967–3978 (2015)

    Article  CAS  Google Scholar 

  27. Crayston, J.A.: In: Gileadi, E., Urbakh, M. (eds.) Encyclopedia of Electrochemistry, pp. 491–529. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2007)

    Google Scholar 

  28. Heras, A., Colina, A., López-Palacios, J., Kaskela, A., Nasibulin, A.G., Ruiz, V., Kauppinen, E.I.: Flexible optically transparent single-walled carbon nanotube electrodes for UV–Vis absorption spectroelectrochemistry. Electrochem. Commun. 11, 442–445 (2009)

    Article  CAS  Google Scholar 

  29. Bowden, E.F., Hawkridge, F.M., Chlebowski, J.F., Bancroft, E.E., Thorpe, C., Blount, H.N.: Cyclic voltammetry and derivative cyclic voltabsorptometry of purified horse heart cytochrome c at tin-doped indium oxide optically transparent electrodes. J. Am. Chem. Soc. 104, 7641–7644 (1982)

    Article  CAS  Google Scholar 

  30. Lisowska-Oleksiak, A., Wilamowska, M., Jasulaitiené, V.: Organic-inorganic composites consisted of poly(3,4-ethylenedioxythiophene) and Prussian Blue analogues. Electrochim. Acta. 56, 3626–3632 (2011)

    Article  CAS  Google Scholar 

  31. Ferapontova, E.E., Christenson, A., Hellmark, A., Ruzgas, T.: Spectroelectrochemical study of heme- and molybdopterin cofactor-containing chicken liver sulphite oxidase. Bioelectrochemistry. 63, 49–53 (2004)

    Article  CAS  PubMed  Google Scholar 

  32. Branch, S.D., Lines, A.M., Lynch, J., Bello, J.M., Heineman, W.R., Bryan, S.A.: Optically transparent thin-film electrode chip for spectroelectrochemical sensing. Anal. Chem. 89, 7324–7332 (2017)

    Article  CAS  PubMed  Google Scholar 

  33. Korzeniewski, C.: In: Sun, S.-G., Christensen, P.A., Wieckowski, A. (eds.) In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis, pp. 179–208. Elsevier, Amsterdam (2007)

    Google Scholar 

  34. Best, S.P., Borg, S.J., Vincent, K.A.: In: Kaim, W., Klein, A. (eds.) Spectroelectrochemistry, pp. 1–30. Royal Society of Chemistry, Cambridge (2008)

    Google Scholar 

  35. Korzeniewski, C.: In: Griffiths, P., Chalmers, J.M. (eds.) Handbook of Vibrational Spectroscopy, pp. 2699–2710. John Wiley & Sons, Ltd (2006)

    Google Scholar 

  36. Foley, J.K., Pons, S.: In-situ infrared spectroelectrochemistry. Anal. Chem. 57, 945A–956A (1985)

    Google Scholar 

  37. Bron, M.: In: Kreysa, G., Ota, K., Savinell, R.F. (eds.) Encyclopedia of Applied Electrochemistry, pp. 1071–1075. Springer, New York (2014)

    Chapter  Google Scholar 

  38. Best, S.: Spectroelectrochemistry of hydrogenase enzymes and related compounds. Coord. Chem. Rev. 249, 1536–1554 (2005)

    Article  CAS  Google Scholar 

  39. Glover, S.D., Goeltz, J.C., Lear, B.J., Kubiak, C.P.: Inter- or intramolecular electron transfer between triruthenium clusters: we’ll cross that bridge when we come to it. Coord. Chem. Rev. 254, 331–345 (2010)

    Article  CAS  Google Scholar 

  40. Healy, A.J., Ash, P.A., Lenz, O., Vincent, K.A.: Attenuated total reflectance infrared spectroelectrochemistry at a carbon particle electrode; unmediated redox control of a [NiFe]-hydrogenase solution. Phys. Chem. Chem. Phys. 15, 7055–7059 (2013)

    Article  CAS  PubMed  Google Scholar 

  41. Dias, M., Hudhomme, P., Levillain, E., Perrin, L., Sahin, Y., Sauvage, F.-X., Wartelle, C.: Electrochemistry coupled to fluorescence spectroscopy: a new versatile approach. Electrochem. Commun. 6, 325–330 (2004)

    Article  CAS  Google Scholar 

  42. Valeur, B., Berberan-Santos, M.N.: Molecular Fluorescence. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2012)

    Book  Google Scholar 

  43. Alévêque, O., Levillain, E.: In: Miomandre, F., Audebert, P. (eds.) Luminescence in Electrochemistry, pp. 1–19. Springer International Publishing, Cham (2017)

    Google Scholar 

  44. Gao, W., Yu, T., Du, Y., Wang, R., Wu, L., Bi, L.: First Orange fluorescence composite film based on Sm-substituted tungstophosphate and its electrofluorochromic performance. ACS Appl. Mater. Interfaces. 8, 11621–11628 (2016)

    Article  CAS  PubMed  Google Scholar 

  45. Bilal, S.: In: Kreysa, G., Ota, K., Savinell, R.F. (eds.) Encyclopedia of Applied Electrochemistry, pp. 1761–1765. Springer, New York (2014)

    Chapter  Google Scholar 

  46. Fleischmann, M., Hendra, P.J., McQuillan, A.J.: Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974)

    Article  CAS  Google Scholar 

  47. Pettinger, B., Schambach, P., Villagómez, C.J., Scott, N.: Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. Annu. Rev. Phys. Chem. 63, 379–399 (2012)

    Article  CAS  PubMed  Google Scholar 

  48. Ibañez, D., Romero, E.C., Heras, A., Colina, A.: Dynamic Raman spectroelectrochemistry of single walled carbon nanotubes modified electrodes using a Langmuir-Schaefer method. Electrochim. Acta. 129, 171–176 (2014)

    Article  CAS  Google Scholar 

  49. Martín-Yerga, D., Pérez-Junquera, A., González-García, M.B., Perales-Rondon, J.V., Heras, A., Colina, A., Hernández-Santos, D., Fanjul-Bolado, P.: Quantitative Raman spectroelectrochemistry using silver screen-printed electrodes. Electrochim. Acta. 264, 183–190 (2018)

    Article  CAS  Google Scholar 

  50. Martín-Yerga, D., Pérez-Junquera, A., González-García, M.B., Hernández-Santos, D., Fanjul-Bolado, P.: Towards single-molecule: in-situ electrochemical SERS detection with disposable substrates. Chem. Commun. 54, 5748–5751 (2018)

    Google Scholar 

  51. Zrimsek, A.B.., Chiang, N., Mattei, M., Zaleski, S., McAnally, M.O., Chapman, C.T., Henry, A.I., Schatz, G.C., Van Duyne, R.P.: Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev. 117, 7583–7613 (2017)

    Article  CAS  PubMed  Google Scholar 

  52. Perales-Rondon, J.V., Hernandez, S., Martin-Yerga, D., Fanjul-Bolado, P., Heras, A., Colina, A.: Electrochemical surface oxidation enhanced Raman scattering. Electrochim. Acta. 282, 377–383 (2018)

    Article  CAS  Google Scholar 

  53. Perales-Rondon, J.V., Hernandez, S., Heras, A., Colina, A.: Effect of chloride and pH on the electrochemical surface oxidation enhanced Raman scattering. Appl. Surf. Sci. 473, 366–372 (2019)

    Article  CAS  Google Scholar 

  54. Keyes, T.E., Forster, R.J.: 14. Spectrochemistry. In: Handbook Electrochemistry, pp. 591–635. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  55. Heineman, W.R., Hawkridge, F.M., Blount, H.N.: In: Bard, A.J. (ed.) Electroanalytical Chemistry: a Series of Advances, vol. 13. Marcel Dekker, Inc., New York (1984)

    Google Scholar 

  56. Kuwana, T., Winograd, N.: In: Bard, A.J. (ed.) Electroanalytical Chemistry. A Series of Advances, vol. 7. Marcel Dekker, Inc., New York (1974)

    Google Scholar 

  57. Pyun, C.H., Park, S.M.: Construction of a microcomputer controlled near normal incidence reflectance spectroelectrochemical system and its performance evaluation. Anal. Chem. 58, 251–256 (1986)

    Article  CAS  Google Scholar 

  58. Garoz-Ruiz, J., Guillen-Posteguillo, C., Colina, A., Heras, A.: Application of spectroelectroanalysis for the quantitative determination of mixtures of compounds with highly overlapping signals. Talanta. 195, 815–821 (2019)

    Article  CAS  PubMed  Google Scholar 

  59. Garoz-Ruiz, J., Heras, A., Colina, A.: Direct determination of ascorbic acid in a grapefruit: paving the way for in vivo spectroelectrochemistry. Anal. Chem. 89, 1815–1822 (2017)

    Article  CAS  PubMed  Google Scholar 

  60. López-Palacios, J., Colina, A., Heras, A., Ruiz, V., Fuente, L.: Bidimensional Spectroelectrochemistry. Anal. Chem. 73, 2883–2889 (2001)

    Article  PubMed  CAS  Google Scholar 

  61. Ruiz, V., Colina, Á., Heras, A., López-Palacios, J., Seeber, R.: Bidimensional chronoabsorptometric study of electropolymerisation of 4,4′-bis(2-methylbutylthio)-2,2′-bithiophene. Electrochem. Commun. 4, 451–456 (2002)

    Article  CAS  Google Scholar 

  62. Izquierdo, D., Ferraresi-Curotto, V., Heras, A., Pis-Diez, R., Gonzalez-Baro, A.C., Colina, A.: Bidimensional Spectroelectrochemistry: application of a new device in the study of a o-vanillin-copper(II) complex. Electrochim. Acta. 245, 79–87 (2017)

    Article  CAS  Google Scholar 

  63. Shah, A.-H.A.: In: Kreysa, G., Ota, K., Savinell, R.F. (eds.) Encyclopedia of Applied Electrochemistry, pp. 2099–2102. Springer New York, New York (2014)

    Chapter  Google Scholar 

  64. Ashley, K.: Solution infrared Spectroelectrochemistry: a review. Talanta. 38, 1209–1218 (1991)

    Article  CAS  PubMed  Google Scholar 

  65. Foley, J.K., Korzeniewski, C., Dashbach, J.L., Pons, S.: In: Bard, A.J. (ed.) Electroanalytical Chemistry. A Series of Advances, vol. 14. Marcel Dekker, Inc., New York (1986)

    Google Scholar 

  66. Zavarine, I.S., Kubiak, C.P.: A versatile variable temperature thin layer reflectance spectroelectrochemical cell. J. Electroanal. Chem. 495, 106–109 (2001)

    Article  CAS  Google Scholar 

  67. Machan, C.W., Sampson, M.D., Chabolla, S.A., Dang, T., Kubiak, C.P.: Developing a mechanistic understanding of molecular electrocatalysts for CO2 reduction using infrared spectroelectrochemistry. Organometallics. 33, 4550–4559 (2014)

    Article  CAS  Google Scholar 

  68. Ashley, K., Pons, S.: Infrared spectroelectrochemistry. Chem. Rev. 88, 673–695 (1988)

    Article  CAS  Google Scholar 

  69. Pletcher, D., Tian, Z.-Q., Williams, D.E.: Developments in Electrochemistry. John Wiley & Sons, Ltd, Chichester (2014)

    Google Scholar 

  70. Mozo, J.D., Domínguez, M., Roldán, E., Rodrígnez Mellado, J.M.: Development of a spectroelectrochemistry assembly (SNIFTIRS) based on a commercial spectrophotometer. Test with the ferrocyanide/ferricyanide redox couple. Electroanalysis. 12, 767–773 (2000)

    Article  CAS  Google Scholar 

  71. Gao, W., Zhou, Q., Fu, Z., Yu, T., Bi, L.: Research on electro-triggered luminescent switching behaviors of film materials containing green luminescence Tb-polyoxometalate. Electrochim. Acta. 317, 139–145 (2019)

    Article  CAS  Google Scholar 

  72. Bewick, A., Kunimatsu, K., Pons, B.S., Russell, J.W.: Electrochemically modulated infrared spectroscopy (EMIRS). J. Electroanal. Chem. Interfacial Electrochem. 160, 47–61 (1984)

    Article  CAS  Google Scholar 

  73. Yang, Y.-Y., Ren, J., Zhang, H.-X., Zhou, Z.-Y., Sun, S.-G., Cai, W.-B.: Infrared spectroelectrochemical study of dissociation and oxidation of methanol at a palladium electrode in alkaline solution. Langmuir. 29, 1709–1716 (2013)

    Article  CAS  PubMed  Google Scholar 

  74. Delgado, J.M., Blanco, R., Orts, J.M., Pérez, J.M., Rodes, A.: Glycolate adsorption at gold and platinum electrodes: a theoretical and in-situ spectroelectrochemical study. Electrochim. Acta. 55, 2055–2064 (2010)

    Google Scholar 

  75. Kirchhoff, J.R.: Luminescence Spectroelectrochemistry. Curr. Sep. 1, 11–14 (1997)

    Google Scholar 

  76. Barrera, J., Ibañez, D., Heras, A., Ruiz, V., Colina, A.: In-situ evidence of the redox-state dependence of photoluminescence in graphene quantum dots. J. Phys. Chem. Lett. 8, 531–537 (2017)

    Google Scholar 

  77. Doneux, T., Bouffier, L., Goudeau, B., Arbault, S.: Coupling electrochemistry with fluorescence confocal microscopy to investigate electrochemical reactivity: a case study with the Resazurin-Resorufin fluorogenic couple. Anal. Chem. 88, 6292–6300 (2016)

    Article  CAS  PubMed  Google Scholar 

  78. Becker, W.: Fluorescence lifetime imaging - techniques and applications. J. Microsc. 247, 119–136 (2012)

    Article  CAS  PubMed  Google Scholar 

  79. López-Lorente, Á.I., Kranz, C.: Recent advances in biomolecular vibrational spectroelectrochemistry. Curr. Opin. Electrochem. 5, 106–113 (2017)

    Article  CAS  Google Scholar 

  80. Ibañez, D., Santidrian, A., Heras, A., Kalbáč, M., Colina, A.: Study of adenine and guanine oxidation mechanism by surface-enhanced Raman spectroelectrochemistry. J. Phys. Chem. C. 119, 8191–8198 (2015)

    Article  CAS  Google Scholar 

  81. Wieckowski, A., Korzeniewski, C., Braunschweig, B. (eds.): Vibrational Spectroscopy at Electrified Interfaces. John Wiley & Sons, Inc., Hoboken (2013)

    Google Scholar 

  82. Wu, D.-Y., Li, J.-F., Ren, B., Tian, Z.-Q.: Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 37, 1025–1041 (2008)

    Article  CAS  PubMed  Google Scholar 

  83. Rosser, T.E., Reisner, E.: Understanding immobilized molecular catalysts for fuel-forming reactions through UV/Vis spectroelectrochemistry. ACS Catal. 7, 3131–3141 (2017)

    Article  CAS  Google Scholar 

  84. Bottomley, L.A., Gorge, J., Goedken, V.L., Ercolani, C.: Spectroelectrochemistry of a μ-nitrido-bridged Iron phthalocyanine dimer. Inorg. Chem. 24, 3733–3737 (1985)

    Google Scholar 

  85. Grupp, A., Bubrin, M., Ehret, F., Zeng, Q., Hartl, F., Kvapilová, H., Záliš, S., Kaim, W.: RuII(α-diimine) or RuIII(α-diimine·-)? Structural, spectroscopic, and theoretical evidence for the stabilization of a prominent metal-to-ligand charge-transfer excited-state configuration in the ground state. Eur. J. Inorg. Chem., 110–119 (2014)

    Google Scholar 

  86. Ye, S., Sarkar, B., Lissner, F., Schleid, T., Van Slageren, J., Fiedler, J., Kaim, W.: Three-spin system with a twist: a bis(semiquinonato)copper complex with a nonplanar configuration at the copper(II) center. Angew. Chemie Int. Ed. 44, 2103–2106 (2005)

    Article  CAS  Google Scholar 

  87. Hildebrandt, A., Lehrich, S.W., Schaarschmidt, D., Jaeschke, R., Schreiter, K., Spange, S., Lang, H.: Ferrocenyl maleimides – synthesis, (spectro-)electrochemistry, and solvatochromism. Eur. J. Inorg. Chem. 2012, 1114–1121 (2012)

    Article  CAS  Google Scholar 

  88. Zhang, M.X., Zhang, J., Jin, X., Sun, X., Yin, J., Hartl, F., Liu, S.H.: Diphenylamine-substituted osmanaphthalyne complexes: structural, bonding, and redox properties of unusual donor–bridge–acceptor systems. Chem. Eur. J. 24, 18998–19009 (2018)

    Article  CAS  PubMed  Google Scholar 

  89. Ringenberg, M.R., Döttinger, F.: Anodic mechanism of 1,1′-bis(diphenylphosphino)ferrocenedicarbonylnickel determined by low-temperature spectroelectrochemistry. Eur. J. Inorg. Chem. 2019, 2430–2435 (2019)

    Article  CAS  Google Scholar 

  90. Foi, A., Di Salvo, F., Doctorovich, F., Huck-Iriart, C., Ramallo-López, J.M., Dürr, M., Ivanović-Burmazović, I., Stirnat, K., Garbe, S., Klein, A.: Synthesis and structural characterisation of unprecedented primary N-nitrosamines coordinated to iridium(IV). Dalt. Trans. 47, 11445–11454 (2018)

    Article  CAS  Google Scholar 

  91. Misra, R., Jadhav, T., Nevonen, D., Monzo, E.M., Mobin, S.M., Nemykin, V.N.: Synthesis, structures, and redox properties of tetracyano-bridged Diferrocene donor–acceptor–donor systems. Organometallics. 36, 4490–4498 (2017)

    Article  CAS  Google Scholar 

  92. Pellegrino, J., Hübner, R., Doctorovich, F., Kaim, W.: Spectroelectrochemical evidence for the nitrosyl redox siblings NO+, NO., and NO coordinated to a strongly electron-accepting FeII porphyrin: DFT calculations suggest the presence of high-spin states after reduction of the FeII-NO – complex. Chem. Eur. J. 17, 7868–7874 (2011)

    Article  CAS  PubMed  Google Scholar 

  93. Bley-Escrich, J., Gisselbrecht, J.P., Michels, M., Zander, L., Vogel, E., Gross, M.: Electrochemical and spectroelectrochemical investigations of mono- and binuclear cobalt(II) complexes of “figure-eight” octapyrrolic macrocycles. Eur. J. Inorg. Chem. 2004, 492–499 (2004)

    Article  CAS  Google Scholar 

  94. Lauck, M., Förster, C., Gehrig, D., Heinze, K.: Cobaltocenium substituents as electron acceptors in photosynthetic model dyads. J. Organomet. Chem. 847, 33–40 (2017)

    Article  CAS  Google Scholar 

  95. Nakamura, A., Suzawa, T., Kato, Y., Watanabe, T.: Species dependence of the redox potential of the primary Electron donor P700 in photosystem I of oxygenic photosynthetic organisms revealed by spectroelectrochemistry. Plant Cell Physiol. 52, 815–823 (2011)

    Article  CAS  PubMed  Google Scholar 

  96. King, A.J., Zatsikha, Y.V., Blessener, T., Dalbec, F., Goff, P.C., Kayser, M., Blank, D.A., Kovtun, Y.P., Nemykin, V.N.: Ultrafast electron-transfer in a fully conjugated coumarin-ferrocene donor-acceptor dyads. J. Organomet. Chem. 887, 86–97 (2019)

    Article  CAS  Google Scholar 

  97. Zeng, Q., Messaoudani, M., Vlček, A., Hartl, F.: Electrochemical reductive deprotonation of an imidazole ligand in a bipyridine tricarbonyl rhenium(I) complex. Eur. J. Inorg. Chem. 2012, 471–474 (2012)

    Article  CAS  Google Scholar 

  98. Karaoglan, G.K., Gümrükçü, G., Koca, A., Gül, A.: The synthesis, characterization, electrochemical and spectroelectrochemical properties of a novel, cationic, water-soluble Zn phthalocyanine with extended conjugation. Dyes Pigments. 88, 247–256 (2011)

    Article  CAS  Google Scholar 

  99. Milum, K.M., Kim, Y.N., Holliday, B.J.: Pt-[NCN] pincer conducting metallopolymers that display redox-attenuated metal - ligand interactions. Chem. Mater. 22, 2414–2416 (2010)

    Article  CAS  Google Scholar 

  100. Tory, J., Setterfield-Price, B., Dryfe, R.A.W., Hartl, F.: [M(CO)4/(2,2′-bipyridine)] (M = Cr, Mo, W) complexes as efficient catalysts for electrochemical reduction of CO2 at a gold electrode. ChemElectroChem. 2, 213–217 (2015)

    Google Scholar 

  101. Soyleyici, S., Karakus, M., Ak, M.: Transparent-blue colored dual type electrochromic device: switchable glass application of conducting organic-inorganic hybrid carbazole polymer. J. Electrochem. Soc. 163, H679–H683 (2016)

    Article  CAS  Google Scholar 

  102. Orlowska, E., Babak, M.V., Dömötör, O., Enyedy, E.A., Rapta, P., Zalibera, M., Bučinský, L., Malček, M., Govind, C., Karunakaran, V., Farid, Y.C.S., McDonnell, T.E., Luneau, D., Schaniel, D., Ang, W.H., Arion, V.B.: NO releasing and anticancer properties of octahedral ruthenium-nitrosyl complexes with equatorial 1H-indazole ligands. Inorg. Chem. 57, 10702–10717 (2018)

    Article  CAS  PubMed  Google Scholar 

  103. Ohui, K., Babak, M.V., Darvasiova, D., Roller, A., Vegh, D., Rapta, P., Guan, G.R.S., Ou, Y.H., Pastorin, G., Arion, V.B.: Redox-active organoruthenium(II)- and organoosmium(II)-copper(II) complexes, with an amidrazone-morpholine hybrid and [CuICl2] as counteranion and their antiproliferative activity. Organometallics. 38, 2307–2318 (2019)

    Article  CAS  Google Scholar 

  104. Tarábek, J., Rapta, P., Kalbáč, M., Dunsch, L.: In-situ of spectroelectrochemistry of poly(N,N′-ethylenebis(salicylideneiminato)Cu(II)). Anal. Chem. 76, 5918–5923 (2004)

    Google Scholar 

  105. Rapta, P., Kožíšek, J., Breza, M., Gembický, M., Dunsch, L.: ESR/UV-Vis-NIR cyclovoltammetry of macrocyclic complex [CuI(bite)]BF4 at different temperatures. J. Electroanal. Chem. 566, 123–129 (2004)

    Google Scholar 

  106. Arion, V.B., Rapta, P., Telser, J., Shova, S.S., Breza, M., Luspai, K., Kozisek, J.: Syntheses, electronic structures, and EPR/UV-vis-NIR spectroelectrochemistry of nickel(II), copper(II), and zinc(II) complexes with a tetradentate ligand based on S-methylisothiosemicarbazide. Inorg. Chem. 50, 2918–2931 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lifschitz, A.M.A.M., Young, R.M.R.M.R.M., Mendez-Arroyo, J., McGuirk, C.M.M., Wasielewski, M.R.M.R., Mirkin, C.A.C.A., Mendez-Arroyo, J., Young, R.M.R.M.R.M., Lifschitz, A.M.A.M., Mirkin, C.A.C.A., Wasielewski, M.R.M.R.: Cooperative electronic and structural regulation in a bioinspired allosteric photoredox catalyst. Inorg. Chem. 55, 8301–8308 (2016)

    Article  CAS  PubMed  Google Scholar 

  108. Garoz-Ruiz, J., Heras, A., Palmero, S., Colina, A.: Development of a novel bidimensional spectroelectrochemistry cell using transfer single-walled carbon nanotubes films as optically transparent electrodes. Anal. Chem. 87, 6233–6239 (2015)

    Article  CAS  PubMed  Google Scholar 

  109. Lopez-Palacios, J., Heras, A., Colina, A., Ruiz, V.: Bidimensional spectroelectrochemical study on electrogeneration of soluble Prussian Blue from hexacyanoferrate(II) solutions. Electrochim. Acta. 49, 1027–1033 (2004)

    Article  CAS  Google Scholar 

  110. De Lacey, A.L., Fernández, V.M., Rousset, M., Cammack, R.: Activation and inactivation of hydrogenase function and the catalytic cycle: Spectroelectrochemical studies. Chem. Rev. 107, 4304–4330 (2007)

    Article  PubMed  CAS  Google Scholar 

  111. Jeuken, L.J.C.: Biophotoelectrochemistry: from Bioelectrochemistry to Biophotovoltaics. Springer International Publishing, Cham (2016)

    Book  Google Scholar 

  112. Bullock, J.P., Mann, K.R.: UV/Vis/IR thin-layer spectroelectrochemical studies of hexakis(aryl isocyanide)chromium complexes: in-situ generation and characterization of four oxidation states. Inorg. Chem. 28, 4006–4011 (1989)

    Google Scholar 

  113. Hosseini, P., Wittstock, G., Brand, I.: Infrared spectroelectrochemical analysis of potential dependent changes in cobalt hexacyanoferrate and copper hexacyanoferrate films on gold electrodes. J. Electroanal. Chem. 812, 199–206 (2018)

    Article  CAS  Google Scholar 

  114. Farrell, I.R., Hartl, F., Záliš, S., Wanner, M., Kaim, W., Vlček, A.: Electrochemical oxidation of [Cr(CO)4(tmp)] to the low-spin Cr(I) species [Cr(CO)4(tmp)]+ (tmp=3,4,7,8-tetramethyl-1,10-phenanthroline): an IR, UV–Vis, and EPR spectroelectrochemical and DFT computational study of the accompanying changes in molecular and. Inorganica Chim. Acta. 318, 143–151 (2001)

    Google Scholar 

  115. Handzlik, J., Hartl, F., Szymańska-Buzar, T.: On the structure, carbonyl-stretching frequencies and relative stability of trans- and cis-[W(CO)42-alkene)2]0/+: a theoretical and IR spectroelectrochemical study. New J. Chem. 26, 145–152 (2002)

    Article  CAS  Google Scholar 

  116. Scheiring, T., Fiedler, J., Kaim, W.: Structure and spectroelectrochemistry (UV/Vis, IR, EPR) of the acceptor-bridged heterodinuclear complex [(η5-C5Me5) ClRh(μ-bptz)Re(CO)3Cl](PF6), bptz = 3,6-Bis(2-pyridyl)- 1,2,4,5-tetrazine. Organometallics. 20, 1437–1441 (2001)

    Google Scholar 

  117. Busby, M., Hartl, F., Matousek, P., Towrie, M., Vlček, A.: Ultrafast excited state dynamics controlling photochemical isomerization of N -Methyl-4-[ trans-2-(4-pyridyl)ethenyl]pyridinium coordinated to a {ReI(CO)3(2,2′-bipyridine)} chromophore. Chem. A Eur. J. 14, 6912–6923 (2008)

    Article  CAS  Google Scholar 

  118. Gabrielsson, A., Matousek, P., Towrie, M., Hartl, F., Záliš, S., Vlček, A.: Excited states of nitro-polypyridine metal complexes and their ultrafast decay. Time-resolved IR absorption, spectroelectrochemistry, and TD-DFT calculations of fac-[Re(Cl)(CO)3 (5-Nitro-1,10-phenanthroline)]. J. Phys. Chem. A. 109, 6147–6153 (2005)

    Google Scholar 

  119. Popov, A.A., Kareev, I.E., Shustova, N.B., Stukalin, E.B., Lebedkin, S.F., Seppelt, K., Strauss, S.H., Boltalina, O.V., Dunsch, L.: Electrochemical, spectroscopic, and DFT study of C60(CF3) n frontier orbitals (n = 2−18): the link between double bonds in pentagons and reduction potentials. J. Am. Chem. Soc. 129, 11551–11568 (2007)

    Article  CAS  PubMed  Google Scholar 

  120. Popov, A.A., Yang, S., Dunsch, L.: Endohedral Fullerenes. Chem. Rev. 113, 5989–6113 (2013)

    Article  CAS  PubMed  Google Scholar 

  121. Koefod, R.S., Xu, C., Lu, W., Shapley, J.R., Hill, M.G., Mann, K.R.: An electrochemical and spectroelectrochemical study of an iridium-buckminsterfullerene complex. Evidence for C60 -localized reductions. J. Phys. Chem. 96, 2928–2930 (1992)

    Article  CAS  Google Scholar 

  122. Pander, J.E., Baruch, M.F., Bocarsly, A.B..: Probing the mechanism of aqueous CO2 reduction on post-transition-metal electrodes using ATR-IR spectroelectrochemistry. ACS Catal. 6, 7824–7833 (2016)

    Article  CAS  Google Scholar 

  123. Smieja, J.M., Kubiak, C.P.: Re(bipy-tBu)(CO)3Cl-improved catalytic activity for reduction of carbon dioxide: IR-spectroelectrochemical and mechanistic studies. Inorg. Chem. 49, 9283–9289 (2010)

    Article  CAS  PubMed  Google Scholar 

  124. Lee, K.J., Elgrishi, N., Kandemir, B., Dempsey, J.L.: Electrochemical and spectroscopic methods for evaluating molecular electrocatalysts. Nat. Rev. Chem. 1, 0039 (2017)

    Article  CAS  Google Scholar 

  125. Christensen, P., Hamnett, A., Muir, A.V.G., Timney, J.A.: An in-situ infrared study of CO2 reduction catalysed by rhenium tricarbonyl bipyridyl derivatives. J. Chem. Soc. Dalt. Trans. (9), 1455 (1992)

    Google Scholar 

  126. Nichols, A.W., Chatterjee, S., Sabat, M., MacHan, C.W.: Electrocatalytic reduction of CO2 to formate by an Iron Schiff base complex. Inorg. Chem. 57, 2111–2121 (2018)

    Google Scholar 

  127. Lieske, L.E., Rheingold, A.L., Machan, C.W.: Electrochemical reduction of carbon dioxide with a molecular polypyridyl nickel complex. Sustain. Energy Fuels. 2, 1269–1277 (2018)

    Article  CAS  Google Scholar 

  128. Froehlich, J.D., Kubiak, C.P.: The homogeneous reduction of CO2 by [Ni(cyclam)]+: increased catalytic rates with the addition of a CO scavenger. J. Am. Chem. Soc. 137, 3565–3573 (2015)

    Article  CAS  PubMed  Google Scholar 

  129. Machan, C.W.: Recent advances in spectroelectrochemistry related to molecular catalytic processes. Curr. Opin. Electrochem. 15, 42–49 (2019)

    Article  CAS  Google Scholar 

  130. Rotundo, L., Garino, C., Priola, E., Sassone, D., Rao, H., Ma, B., Robert, M., Fiedler, J., Gobetto, R., Nervi, C.: Electrochemical and photochemical reduction of CO2 catalyzed by Re(I) complexes carrying local proton sources. Organometallics. 38, 1351–1360 (2019)

    Google Scholar 

  131. Sickerman, N.S., Hu, Y., Ribbe, M.W.: Metalloproteins. Methods Mol. Biol. 1876, 3–24 (2019)

    Article  CAS  PubMed  Google Scholar 

  132. Wei, Z., Ryan, M.D.: Infrared spectroelectrochemical reduction of iron porphyrin complexes. Inorg. Chem. 49, 6948–6954 (2010)

    Article  CAS  PubMed  Google Scholar 

  133. De Lacey, A.L., Stadler, C., Fernandez, V.M., Hatchikian, C.E., Fan, H.-J., Li, S., Hall, M.B.: IR spectroelectrochemical study of the binding of carbon monoxide to the active site of Desulfovibrio fructosovorans Ni-Fe hydrogenase. JBIC J. Biol. Inorg. Chem. 7, 318–326 (2002)

    Article  PubMed  CAS  Google Scholar 

  134. Healy, A.J., Reeve, H.A., Vincent, K.A.: Development of an infrared spectroscopic approach for studying metalloenzyme active site chemistry under direct electrochemical control. Faraday Discuss. 148, 345–357 (2011)

    Article  CAS  PubMed  Google Scholar 

  135. Fu, Z., Ma, Z., Yu, T., Bi, L.: A first blue fluorescence composite film based on graphitic carbon nitride nanosheets/polyoxometalate for application in reversible electroluminescence switching. J. Mater. Chem. C. 7, 3253–3262 (2019)

    Article  CAS  Google Scholar 

  136. Xu, L., Wang, B., Gao, W., Wu, L., Bi, L.: Study on effects of tungstophosphate structures on electrochemically induced luminescence switching behaviors of the composite films consisting of tris(1,10-phenanthroline) ruthenium. J. Mater. Chem. C. 3, 1732–1737 (2015)

    Article  CAS  Google Scholar 

  137. Kamat, P.V., Barazzouk, S., Hotchandani, S.: Electrochemical modulation of fluorophore emission on a nanostructured gold film. Angew. Chemie Int. Ed. 41, 2764–2767 (2002)

    Article  CAS  Google Scholar 

  138. Lines, A.M., Warner, J.D., Heineman, W.R., Clark, S.B., Bryan, S.A.: Spectroelectrochemical sensor for spectroscopically hard-to-detect metals by in-situ formation of a luminescent complex using Ru(II) as a model compound. Electroanalysis. 30, 2644–2652 (2018)

    Google Scholar 

  139. Martín-Yerga, D., Pérez-Junquera, A., Hernández-Santos, D., Fanjul-Bolado, P.: Time-resolved luminescence spectroelectrochemistry at screen-printed electrodes: following the redox-dependent fluorescence of [Ru(bpy)3]2+. Anal. Chem. 89, 10649–10654 (2017)

    Google Scholar 

  140. Ruiz-Sánchez, P., Mundwiler, S., Alberto, R.: Syntheses of fluorescent vitamin B12-Pt(II) conjugates and their Pt(II) release in a spectroelectrochemical assay. Chim. Int. J. Chem. 61, 190–193 (2007)

    Article  CAS  Google Scholar 

  141. Oelsner, C., Herrero, M.A., Ehli, C., Prato, M., Guldi, D.M.: Charge transfer events in semiconducting single-wall carbon nanotubes. J. Am. Chem. Soc. 133, 18696–18706 (2011)

    Article  CAS  PubMed  Google Scholar 

  142. Wang, J., Wang, K., Wang, F.-B., Xia, X.-H.: Bioinspired copper catalyst effective for both reduction and evolution of oxygen. Nat. Commun. 5, 5285–5293 (2014)

    Article  CAS  PubMed  Google Scholar 

  143. Browne, W.R., McGarvey, J.J.: The Raman effect and its application to electronic spectroscopies in metal-centered species: techniques and investigations in ground and excited states. Coord. Chem. Rev. 251, 454–473 (2007)

    Article  CAS  Google Scholar 

  144. Ibañez, D., Plana, D., Heras, A., Fermín, D.J., Colina, A.: Monitoring charge transfer at polarisable liquid/liquid interfaces employing time-resolved Raman spectroelectrochemistry. Electrochem. Commun. 54, 14–17 (2015)

    Article  CAS  Google Scholar 

  145. Caterino, M., Herrmann, M., Merlino, A., Riccardi, C., Montesarchio, D., Mroginski, M.A., Musumeci, D., Ruffo, F., Paduano, L., Hildebrandt, P., Kozuch, J., Vergara, A.: On the pH-modulated Ru-based prodrug activation mechanism. Inorg. Chem. 58, 1216–1223 (2019)

    Article  CAS  PubMed  Google Scholar 

  146. Ibañez, D., Izquierdo, D., Fernandez-Blanco, C., Heras, A., Colina, A.: Electrodeposition of silver nanoparticles in the presence of different complexing agents by time-resolved Raman spectroelectrochemistry. J. Raman Spectrosc. 49, 482–492 (2018)

    Article  CAS  Google Scholar 

  147. De Mesmaeker, A.K., Jacquet, L., Masschelein, A., Vanhecke, F., Heremans, K.: Resonance Raman spectra and spectroelectrochemical properties of mono- and polymetallic ruthenium complexes with 1,4,5,8,9,12-hexaazatriphenylene. Inorg. Chem. 28, 2465–2470 (1989)

    Article  Google Scholar 

  148. Hartl, F., Snoeck, T.L., Stufkens, D.J., Lever, A.B..P.: Resonance Raman spectroelectrochemical study of (μ-3,3′,4,4′-Tetraimino-3,3′,4,4′-tetrahydrobiphenyl)bis[bis(bipyridine)ruthenium(II)](4+) and its one-, two-, and four-electron-reduction products. Inorg. Chem. 34, 3887–3894 (1995)

    Google Scholar 

  149. Gordon, K.C., Burrell, A.K., Simpson, T.J., Page, S.E., Kelso, G., Polson, M.I.J., Flood, A.: Probing the nature of the redox products and lowest excited state of [(bpy)2Ru(μ-bptz)Ru(bpy)2]4+: a resonance Raman study. Eur. J. Inorg. Chem. (3), 554–563 (2002)

    Google Scholar 

  150. Rocha, R.C., Brown, M.G., Londergan, C.H., Salsman, J.C., Kubiak, C.P., Shreve, A.P.: Intervalence-resonant Raman spectroscopy of strongly coupled mixed-valence cluster dimers of ruthenium. J. Phys. Chem. A. 109, 9006–9012 (2005)

    Article  CAS  PubMed  Google Scholar 

  151. Santos, J.J., Ando, R.A., Toma, S.H., Corio, P., Araki, K., Toma, H.E.: Surface enhanced Raman spectroelectrochemistry of a μ-Oxo Triruthenium acetate cluster: an experimental and theoretical approach. Inorg. Chem. 54, 9656–9663 (2015)

    Google Scholar 

  152. Al-Obaidi, A.H.R., Gordon, K.C., McGarvey, J.J., Bell, S.E.J., Grimshaw, J.: Transient resonance Raman and Raman spectroelectrochemical studies of copper(CuI) complexes with polypyridyl ligands. J. Phys. Chem. 97, 10942–10947 (1993)

    Article  CAS  Google Scholar 

  153. Hartl, F., Stufkens, D.J., Vlcek, A.: Nature of the manganese(I)-dioxolene bonding as a function of the ligand oxidation state: UV-visible, IR, and resonance Raman spectroelectrochemical study of [Mn(CO)3Ln(Diox)]z (n = 0, 1; z = −2, −1, 0, +1) and [Mn(CO)2{P(OEt)3}m(Diox)]z (m = 1, 2; z = −1). Inorg. Chem. 31, 1687–1695 (1992)

    Article  CAS  Google Scholar 

  154. Vitols, S.E., Kumble, R., Blackwood, M.E., Roman, J.S., Spiro, T.G.: Charge transfer switching in photoexcited Ru(II) porphyrins: a time-resolved resonance Raman and spectroelectrochemical study. J. Phys. Chem. 100, 4180–4187 (1996)

    Google Scholar 

  155. Lin, C.-Y., Spiro, T.G.: Structural distortion of the vanadyltetraphenylporphine anion radical probed by resonance Raman spectroelectrochemistry. Inorg. Chem. 35, 5237–5243 (1996)

    Article  CAS  Google Scholar 

  156. Blackwood, M.E., Lin, C.Y., Cleary, S.R., McGlashen, M.M., Spiro, T.G.: A resonance Raman spectroelectrochemical study of the Zn(II) tetraphenylchlorin anion. J. Phys. Chem. A. 101, 255–258 (1997)

    Article  CAS  Google Scholar 

  157. Weinstein, J.A., Zheligovskaya, N.N., Mel’nikov, M.Y., Hartl, F.: Spectroscopic (UV/VIS, resonance Raman) and spectroelectrochemical study of platinum(II) complexes with 2,2′-bipyridine and aromatic thiolate ligands. J. Chem. Soc. Dalt. Trans. (15), 2459–2466 (1998)

    Google Scholar 

  158. Page, S.E., Gordon, K.C., Burrell, A.K.: Altering the balance between ligand-based radical anion formation and dechelation in electrochemically reduced binuclear copper(I) complexes: a resonance Raman spectroelectrochemical study. Inorg. Chem. 37, 4452–4459 (1998)

    Article  CAS  PubMed  Google Scholar 

  159. Zedler, L., Guthmuller, J., Rabelo De Moraes, I., Kupfer, S., Krieck, S., Schmitt, M., Popp, J., Rau, S., Dietzek, B.: Resonance-Raman spectro-electrochemistry of intermediates in molecular artificial photosynthesis of bimetallic complexes. Chem. Commun. 50, 5227–5229 (2014)

    Article  CAS  Google Scholar 

  160. Kavan, L., Frank, O., Kalbáč, M., Dunsch, L.: Supramolecular assembly of single-walled carbon nanotubes with a ruthenium(ii)-bipyridine complex: an in-situ Raman spectroelectrochemical study. J. Phys. Chem. C. 113, 2611–2617 (2009)

    Google Scholar 

  161. Ferreira, L.M.C., Grasseschi, D., Santos, M.S.F., Martins, P.R., Gutz, I.G.R., Ferreira, A.M.C., Araki, K., Toma, H.E., Angnes, L.: Unveiling the structure of polytetraruthenated nickel porphyrin by Raman spectroelectrochemistry. Langmuir. 31, 4351–4360 (2015)

    Google Scholar 

  162. Joya, K.S., Sala, X.: In-situ Raman and surface-enhanced Raman spectroscopy on working electrodes: spectroelectrochemical characterization of water oxidation electrocatalysts. Phys. Chem. Chem. Phys. 17, 21094–21103 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aranzazu Heras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González-Baró, A.C., Espino, G., Colina, A., Heras, A. (2022). Spectroelectrochemistry. In: Bahnemann, D., Patrocinio, A.O.T. (eds) Springer Handbook of Inorganic Photochemistry. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-63713-2_8

Download citation

Publish with us

Policies and ethics