Skip to main content

Metal Complexes as DNA Cleavage and Antimicrobial Agents

  • Chapter
  • First Online:
Springer Handbook of Inorganic Photochemistry

Part of the book series: Springer Handbooks ((SHB))

  • 4363 Accesses

Abstract

In this chapter it is presented an overview regarding some examples presented in the literature regarding photochemical applications of metal complexes as DNA cleavage and microbiocidal agents. In photodynamic therapy (PDT) oxygen is required, which is photochemically converted in singlet oxygen or hydroxyl species that promotes DNA cleavage, microbial killing, and other kinds of cell damage. In these field, many strategies have been applied to improve the photophysical properties and potential as DNA intercalators of metal complexes (mainly Ru and Cu), including the utilization of an organic molecule with extended aromatic rings which presents potential ability to increase the 3MLCT lifetimes, in the case of Ru complexes.

General scheme illustrating a ruthenium metal complex reaching the cytosol and nucleus of the cell and its eventual binding and damage to DNA, leading to cell death

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadler, P.J.: Photoactivatable metal complexes: from theory to applications in biotechnology and medicine. Preface. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 371, 20130125 (2013)

    Article  Google Scholar 

  2. Sadler, P.J., Guo, Z.J.: Metal complexes in medicine: design and mechanism of action. Pure Appl. Chem. 70, 863–871 (1998)

    Article  CAS  Google Scholar 

  3. Glasson, C.R.K., Lindoy, L.F., Meehan, G.V.: Coord. Chem. Rev. 252, 940–963 (2008)

    Google Scholar 

  4. Santini, C., Pellei, M., Gandin, V., Porchia, M., Tisato, F., Marzano, C.: Advances in copper complexes as anticancer agents. Chem. Rev. 114, 815–862 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. Imran, M., Ayub, W., Butler, I.S., Zia-ur-Rehman: Photoactivated platinum-based anticancer drugs. Coord. Chem. Rev. 376, 405–429 (2018)

    Article  CAS  Google Scholar 

  6. Balzani, V., Bergamini, G., Ceroni, P.: From the photochemistry of coordination compounds to light-powered nanoscale devices and machines. Coord. Chem. Rev. 252, 2456–2469 (2008)

    Article  CAS  Google Scholar 

  7. Mari, C., Pierroz, V., Ferrari, S., Gasser, G.: Combination of Ru(ii) complexes and light: new frontiers in cancer therapy. Chem. Sci. 6, 2660–2686 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Knoll, J.D., Albani, B.A., Turro, C.: Excited state investigation of a new Ru(II) complex for dual reactivity with low energy light. Chem. Commun. 51, 8777–8780 (2015)

    Article  CAS  Google Scholar 

  9. Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P., Vonzelewsky, A.: Ru(II) polypyridine complexes - photophysics, photochemistry, electrochemistry, and chemi-luminescence. Coord. Chem. Rev. 84, 85–277 (1988)

    Article  CAS  Google Scholar 

  10. Abreu, F.D.D., Diógenes, I.C.N., Lopes, L.G.F., Sousa, E.H., de Carvalho, I.M.M.: Ruthenium(II) bipyridine complexes with pendant anthracenyl and naphthyl moieties: a strategy for a ROS generator with DNA binding selectivity. Inorg. Chim. Acta. 439, 92–99 (2016)

    Article  CAS  Google Scholar 

  11. de Carvalho, I.M.M., Moreira, I.D., Gehlen, M.H.: Synthesis, characterization, and photophysical studies of new bichromophoric ruthenium(II) complexes. Inorg. Chem. 42, 1525–1531 (2003)

    Article  PubMed  CAS  Google Scholar 

  12. Sun, Y., Joyce, L.E., Dickson, N.M., Turro, C.: Efficient DNA photocleavage by [Ru(bpy)2(dppn)]2+ with visible light. Chem. Commun. 46, 2426–2428 (2010)

    Google Scholar 

  13. Chen, X., Gao, F., Zhou, Z.X., Yang, W.Y., Guo, L.T., Ji, L.N.: Effect of ancillary ligands on the topoisomerases II and transcription inhibition activity of polypyridyl ruthenium(II) complexes. J. Inorg. Biochem. 104, 576–582 (2010)

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Y., Zhou, Q., Zheng, Y., Li, K., Jiang, G., Hou, Y., Zhang, B., Wang, X.: DNA photocleavage by non-innocent ligand-based Ru(II) complexes. Inorg. Chem. 55, 4296–4300 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. Dobrucki, J.W.: Interaction of oxygen-sensitive luminescent probes Ru(phen)32+ and Ru(bipy)32+ with animal and plant cells in vitro: mechanism of phototoxicity and conditions for non-invasive oxygen measurements. J. Photochem. Photobiol. B Biol. 65, 136–144 (2001)

    Google Scholar 

  16. Harriman, A., Hissler, M., Khatyr, A., Ziessel, R.: A ruthenium(II) tris(2,2′-bipyridine) derivative possessing a triplet lifetime of 42 μs. Chem. Commun., 735–736 (1999)

    Google Scholar 

  17. Hissler, M., Harriman, A., Khatyr, A., Ziessel, R.: Intramolecular triplet energy transfer in pyrene-metal polypyridine dyads: a strategy for extending the triplet lifetime of the metal complex. Chem Eur J. 5, 3366–3381 (1999)

    Article  CAS  Google Scholar 

  18. Kozlov, D.V., Tyson, D.S., Goze, C., Ziessel, R., Castellano, F.N.: Room temperature phosphorescence from ruthenium(II) complexes bearing conjugated pyrenylethynylene subunits. Inorg. Chem. 43, 6083–6092 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. Goze, C., Kozlov, D.V., Tyson, D.S., Ziessel, R., Castellano, F.N.: Synthesis and photophysics of ruthenium(II) complexes with multiple pyrenylethynylene subunits. New J. Chem. 27, 1679–1683 (2003)

    Article  CAS  Google Scholar 

  20. Friedman, A.E., Chambron, J.C., Sauvage, J.P., Turro, N.J., Barton, J.K.: Molecular light switch for DNA - Ru(Bpy)2(Dppz)2+. J. Am. Chem. Soc. 112, 4960–4962 (1990)

    Article  CAS  Google Scholar 

  21. Knoll, J.D., Turro, C.: Control and utilization of ruthenium and rhodium metal complex excited states for photoactivated cancer therapy. Coord. Chem. Rev. 282, 110–126 (2015)

    Article  PubMed  CAS  Google Scholar 

  22. Hartshorn, R.M., Barton, J.K.: Novel dipyridophenazine complexes of ruthenium(ii) - exploring luminescent reporters of DNA. J. Am. Chem. Soc. 114, 5919–5925 (1992)

    Article  CAS  Google Scholar 

  23. Brennaman, M.K., Meyer, T.J., Papanikolas, J.M.: [Ru(pbpy)2dppz]2+ light-switch mechanism in protic solvents as studied through temperature-dependent lifetime measurements. J. Phys. Chem. A. 108, 9938–9944 (2004)

    Google Scholar 

  24. Li, G.Y., Sun, L.L., Ji, L.N., Chao, H.: Ruthenium(II) complexes with dppz: from molecular photoswitch to biological applications. Dalton Trans. 45, 13261–13276 (2016)

    Article  CAS  PubMed  Google Scholar 

  25. Burya, S.J., Luttermana, D.A., Turro, C.: Absence of quenching by [Fe(CN)6]4- is not proof of DNA intercalation. Chem. Commun. 47, 1848–1850 (2011)

    Google Scholar 

  26. Burya, D.L.S.J., Turro, C.: Absence of quenching by [Fe(CN)6]4- is not proof of DNA intercalation. Chem. Commun. 47, 1848–1850 (2011)

    Google Scholar 

  27. Abreu, F.D., Paulo, T.D., Gehlen, M.H., Ando, R.A., Lopes, L.G.F., Gondim, A.C.S., Vasconcelos, M.A., Teixeira, E.H., Sousa, E.H.S., de Carvalho, I.M.M.: Aryl-substituted ruthenium(II) complexes: a strategy for enhanced photocleavage and efficient DNA binding. Inorg. Chem. 56, 9084–9096 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. Schoonover, J.R., Dattelbaum, D.M., Malko, A., Klimov, V.I., Meyer, T.J., Styers-Barnett, D.J., Gannon, E.Z., Granger, J.C., Aldridge, W.S., Papanikolas, J.M.: Ultrafast energy transfer between the (MLCT)-M-3 state of [RuII(dmb)2(bpy-an)]2+ and the covalently appended anthracene. J. Phys. Chem. A. 109, 2472–2475 (2005)

    Google Scholar 

  29. Fong, J., Kasimova, K., Arenas, Y., Kaspler, P., Lazic, S., Mandel, A., Lilge, L.: A novel class of ruthenium-based photosensitizers effectively kills in vitro cancer cells and in vivo tumors. Photochem. Photobiol. Sci. 14, 2014–2023 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. Monro, S., Colón, K.L., Yin, H., Roque, J., Konda, P., Gujar, S., Thummel, R.P., Lilge, L., Cameron, C.G., McFarland, S.A.: Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev. 119(2), 797–828 (2019)

    Article  CAS  PubMed  Google Scholar 

  31. Li, A., Turro, C., Kodanko, J.J.: Ru(II) polypyridyl complexes derived from tetradentate ancillary ligands for effective photocaging. Acc. Chem. Res. 51, 1415–1421 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Knoll, J.D., Albani, B.A., Turro, C.: New Ru(II) complexes for dual photoreactivity: ligand exchange and O-1(2) generation. Acc. Chem. Res. 48, 2280–2287 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Greenough, S.E., Roberts, G.M., Smith, N.A., Horbury, M.D., McKinlay, R.G., Zurek, J.M., Paterson, M.J., Sadler, P.J., Stavros, V.G.: Ultrafast photo-induced ligand solvolysis of cis-[Ru(bipyridine)(2)(nicotinamide)(2)](2+): experimental and theoretical insight into its photoactivation mechanism. Phys. Chem. Chem. Phys. 16, 19141–19155 (2014)

    Google Scholar 

  34. Nunes, E.D., Villela, A.D., Basso, L.A., Teixeira, E.H., Andrade, A.L., Vasconcelos, M.A., Nascimento Neto, L.G., Gondim, A.C.S., Diógenes, I.C.N., Romo, A.I.B., Nascimento, O.R., Zampieri, D., Paulo, T.F., Carvalho, I.M.M., Lopes, L.G.F., Sousa, E.H.S.: Light-induced disruption of an acyl hydrazone link as a novel strategy for drug release and activation: isoniazid as a proof-of-concept case. Inorg. Chem. Front. 7, 859–870 (2020)

    Article  CAS  Google Scholar 

  35. Silva, C.D.S., Paz, I.A., Abreu, F.D., de Sousa, A.P., Verissimo, C.P., Nascimento, N.R.F., Paulo, T.F., Zampieri, D., Eberlin, M.N., Gondim, A.C.S., Andrade, L.C., Carvalho, I.M.M., Sousa, E.H.S., Lopes, L.G.F.: Thiocarbonyl-bound metallonitrosyl complexes with visible-light induced DNA cleavage and promising vasodilation activity. J. Inorg. Biochem. 182, 83–91 (2018)

    Article  CAS  PubMed  Google Scholar 

  36. Festa, R.A., Thiele, D.J.: Copper: an essential metal in biology. Curr. Biol. 21, R877–R883 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Solomon, E.I., Heppner, D.E., Johnston, E.M., Ginsbach, J.W., Cirera, J., Qayyum, M., Kieber-Emmons, M.T., Kjaergaard, C.H., Hadt, R.G., Tian, L.: Copper active sites in biology. Chem. Rev. 114, 3659–3853 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, A.Y., Adamek, R.N., Dick, B.L., Credille, C.V., Morrison, C.N., Cohen, S.M.: Targeting metalloenzymes for therapeutic intervention. Chem. Rev. 119(2), 1323–1455 (2019)

    Article  CAS  PubMed  Google Scholar 

  39. McGivern, T.J.P., Afsharpour, S., Marmion, C.J.: Copper complexes as artificial DNA metallonucleases: from Sigman’s reagent to next generation anti-cancer agent? Inorg. Chim. Acta. 472, 12–39 (2018)

    Article  CAS  Google Scholar 

  40. Sigman, D.S., Graham, D.R., D’Aurora, V., Stern, A.M.: Oxygen-dependent cleavage of DNA by the 1,10-phenanthroline . cuprous complex. Inhibition of Escherichia coli DNA polymerase I. J. Biol. Chem. 254, 12269–12272 (1979)

    Article  CAS  PubMed  Google Scholar 

  41. Joshi, R.R., Likhite, S.M., Krishna Kumar, R., Ganesh, K.N.: DNA cleavage by Cu(II)-desferal: identification of C1′-hydroxylation as the initial event for DNA damage. Biochim. Biophys. Acta Gen. Subj. 1199, 285–292 (1994)

    Article  CAS  Google Scholar 

  42. Strekas, T.C., Baker, A.D., Harripersad-morgan, O., Morgan, R.J.: Characterization of copper(I) and copper(II) complexes of a bis-diimine coordinated to ruthenium(II) and their interaction with calf thymus DNA. J. Coord. Chem. 34, 77–85 (1995)

    Article  CAS  Google Scholar 

  43. Zareie, M.H., Erdem, G., Oner, C., Oner, R., Ogus, A., Piskin, E.: Investigation of ascorbate-Cu (II) induced cleavage of DNA by scanning tunneling microscopy. Int. J. Biol. Macromol. 19, 69–73 (1996)

    Article  CAS  PubMed  Google Scholar 

  44. Itoh, T., Hisada, H., Sumiya, T., Hosono, M., Usui, Y., Fujii, Y.: Hydrolytic cleavage of DNA by a novel copper(ii) complex with cis,cis-1,3,5-triaminocyclohexane. Chem. Commun., 677–678 (1997)

    Google Scholar 

  45. Routier, S., Bernier, J.-L., Catteau, J.-P., Bailly, C.: Recognition and cleavage of DNA by a distamycin-salen·copper conjugate. Bioorg. Med. Chem. Lett. 7, 1729–1732 (1997)

    Article  CAS  Google Scholar 

  46. Pitié, M., Sudres, B., Meunier, B.: Dramatic increase of the DNA cleavage activity of Cu(Clip-phen) by fixing the bridging linker on the C3 position of the phenanthroline units. Chem. Commun., 2597–2598 (1998)

    Google Scholar 

  47. Mahadevan, S., Palaniandavar, M.: Spectral and electrochemical behavior of copper(II)−phenanthrolines bound to calf thymus DNA. [(5,6-dimethyl-OP)2Cu]2+ (5,6-dimethyl-OP = 5,6-dimethyl-1,10-phenanthroline) induces a conformational transition from B to Z DNA. Inorg. Chem. 37, 3927–3934 (1998)

    Google Scholar 

  48. Lamour, E., Routier, S., Bernier, J.-L., Catteau, J.-P., Bailly, C., Vezin, H.: Oxidation of CuII to CuIII, free radical production, and DNA cleavage by hydroxy-salen−copper complexes. Isomeric effects studied by ESR and electrochemistry. J Am Chem Soc. 121, 1862–1869 (1999)

    Article  CAS  Google Scholar 

  49. Eppley, H.J., Lato, S.M., Zaleski, J.M., Ellington, A.D.: Transition metal Kinamycin model as a DNA photocleaver for hypoxic environments: bis(9-diazo-4,5-diazafluorene)copper(II) nitrate†. Chem. Commun., 2405–2406 (1999)

    Google Scholar 

  50. Kou, J., Dou, D., Yang, L.: Porphyrin photosensitizers in photodynamic therapy and its applications. Oncotarget. 8, 81591–81603 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  51. Heinemann, F., Karges, J., Gasser, G.: Critical overview of the use of Ru(II) polypyridyl complexes as photosensitizers in one-photon and two-photon photodynamic therapy. Acc. Chem. Res. 50, 2727–2736 (2017)

    Article  CAS  PubMed  Google Scholar 

  52. Nicewicz, D.A., Nguyen, T.M.: Recent applications of organic dyes as photoredox catalysts in organic synthesis. ACS Catal. 4, 355–360 (2014)

    Article  CAS  Google Scholar 

  53. Bortolotto, T., Silva-Caldeira, P.P., Pich, C.T., Pereira-Maia, E.C., Terenzi, H.: Tunable DNA cleavage activity promoted by copper(ii) ternary complexes with N-donor heterocyclic ligands. Chem. Commun. 52, 7130–7133 (2016)

    Article  CAS  Google Scholar 

  54. Chen, G.J., Qiao, X., Qiao, P.Q., Xu, G.J., Xu, J.Y., Tian, J.L., Gu, W., Liu, X., Yan, S.P.: Synthesis, DNA binding, photo-induced DNA cleavage, cytotoxicity and apoptosis studies of copper(II) complexes. J. Inorg. Biochem. 105, 119–126 (2011)

    Article  CAS  PubMed  Google Scholar 

  55. Roy, S., Saha, S., Majumdar, R., Dighe, R.R., Chakravarty, A.R.: Photo-activated cytotoxicity of a pyrenyl-terpyridine copper(II) complex in HeLa cells. Polyhedron. 29, 3251–3256 (2010)

    Article  CAS  Google Scholar 

  56. Roy, S., Saha, S., Majumdar, R., Dighe, R.R., Chakravarty, A.R.: DNA photocleavage and anticancer activity of terpyridine copper(II) complexes having phenanthroline bases. Polyhedron. 29, 2787–2794 (2010)

    Article  CAS  Google Scholar 

  57. Garcia-Gimenez, J.L., Hernandez-Gil, J., Martinez-Ruiz, A., Castineiras, A., Liu-Gonzalez, M., Pallardo, F.V., Borras, J., Alzuet Pina, G.: DNA binding, nuclease activity, DNA photocleavage and cytotoxic properties of Cu(II) complexes of N-substituted sulfonamides. J. Inorg. Biochem. 121, 167–178 (2013)

    Article  CAS  PubMed  Google Scholar 

  58. Patra, A.K., Dhar, S., Nethaji, M., Chakravarty, A.R.: Visible light-induced nuclease activity of a ternary mono-phenanthroline copper(II) complex containing L-methionine as a photosensitizer. Chem. Commun. 13, 1562–1563 (2003)

    Article  CAS  Google Scholar 

  59. Patra, A.K., Dhar, S., Nethaji, M., Chakravarty, A.R.: Metal-assisted red light-induced DNA cleavage by ternary L-methionine copper(II) complexes of planar heterocyclic bases. Dalton Trans. 5, 896–902 (2005)

    Article  CAS  Google Scholar 

  60. Patra, A.K., Nethaji, M., Chakravarty, A.R.: Red-light photosensitized cleavage of DNA by (l-lysine)(phenanthroline base)copper(II) complexes. Dalton Trans. 16, 2798–2804 (2005)

    Article  CAS  Google Scholar 

  61. Patra, A.K., Nethaji, M., Chakravarty, A.R.: Synthesis, crystal structure, DNA binding and photo-induced DNA cleavage activity of (S-methyl-L-cysteine)copper(II) complexes of heterocyclic bases. J. Inorg. Biochem. 101, 233–244 (2007)

    Article  CAS  PubMed  Google Scholar 

  62. Patra, A.K., Bhowmick, T., Ramakumar, S., Nethaji, M., Chakravarty, A.R.: DNA cleavage in red light promoted by copper(II) complexes of alpha-amino acids and photoactive phenanthroline bases. Dalton Trans. 48, 6966–6976 (2008)

    Article  CAS  Google Scholar 

  63. Goswami, T.K., Chakravarthi, B.V., Roy, M., Karande, A.A., Chakravarty, A.R.: Ferrocene-conjugated L-tryptophan copper(II) complexes of phenanthroline bases showing DNA photocleavage activity and cytotoxicity. Inorg. Chem. 50, 8452–8464 (2011)

    Article  CAS  PubMed  Google Scholar 

  64. Goswami, T.K., Gadadhar, S., Karande, A.A., Chakravarty, A.R.: Photocytotoxic ferrocene-appended (L-tyrosine)copper(II) complexes of phenanthroline bases. Polyhedron. 52, 1287–1298 (2013)

    Article  CAS  Google Scholar 

  65. Maity, B., Roy, M., Banik, B., Majumdar, R., Dighe, R.R., Chakravarty, A.R.: Ferrocene-promoted photoactivated DNA cleavage and anticancer activity of terpyridyl copper(II) phenanthroline complexes. Organometallics. 29, 3632–3641 (2010)

    Article  CAS  Google Scholar 

  66. Abu-Dief, A.M., Mohamed, I.M.A.: A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni. Suef. Univ. J. Basic. Appl. Sci. 4, 119–133 (2015)

    PubMed  PubMed Central  Google Scholar 

  67. Hameed, A., Al-Rashida, M., Uroos, M., Abid Ali, S., Khan, K.M.: Schiff bases in medicinal chemistry: a patent review (2010-2015). Expert Opinion on Therapeutic Patent. 27, 63–79 (2017)

    Article  CAS  Google Scholar 

  68. Zoubi, W.A.: Biological activities of Schiff bases and their complexes: a review of recent works. Int. J. Org. Chem. 03(03), 24 (2013)

    Article  CAS  Google Scholar 

  69. Dhar, S., Senapati, D., Das, P.K., Chattopadhyay, P., Nethaji, M., Chakravarty, A.R.: Ternary copper complexes for photocleavage of DNA by red light: direct evidence for sulfur-to-copper charge transfer and d-d band involvement. J. Am. Chem. Soc. 125, 12118–12124 (2003)

    Article  CAS  PubMed  Google Scholar 

  70. Lahiri, D., Majumdar, R., Mallick, D., Goswami, T.K., Dighe, R.R., Chakravarty, A.R.: Remarkable photocytotoxicity in hypoxic HeLa cells by a dipyridophenazine copper(II) Schiff base thiolate. J. Inorg. Biochem. 105, 1086–1094 (2011)

    Article  CAS  PubMed  Google Scholar 

  71. Saswati, A., Chakraborty, S., Dash, P., Panda, A.K., Acharyya, R., Biswas, A., Mukhopadhyay, S., Bhutia, S.K., Crochet, A., Patil, Y.P., Nethaji, M., Dinda, R.: Synthesis, X-ray structure and in vitro cytotoxicity studies of Cu(I/II) complexes of thiosemicarbazone: special emphasis on their interactions with DNA. Dalton Trans. 44, 6140–6157 (2015)

    Article  CAS  PubMed  Google Scholar 

  72. Rogolino, D., Gatti, A., Carcelli, M., Pelosi, G., Bisceglie, F., Restivo, F.M., Degola, F., Buschini, A., Montalbano, S., Feretti, D., Zani, C.: Thiosemicarbazone scaffold for the design of antifungal and antiaflatoxigenic agents: evaluation of ligands and related copper complexes. Sci. Rep. 7, 11214 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Serda, M., Kalinowski, D.S., Rasko, N., Potuckova, E., Mrozek-Wilczkiewicz, A., Musiol, R., Malecki, J.G., Sajewicz, M., Ratuszna, A., Muchowicz, A., Golab, J., Simunek, T., Richardson, D.R., Polanski, J.: Exploring the anti-cancer activity of novel thiosemicarbazones generated through the combination of retro-fragments: dissection of critical structure-activity relationships. PLoS One. 9, e110291 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Mbah, J.A., Ayimele, G.A., Eyonganyoh, E.N., Nfor, E.N.: Synthesis, molecular structure and antibacterial activity of benzylmethyl-4-methyl-3-thiosemicarbazone. Int. J. Organic Chem. 07, 83–90 (2017)

    Article  CAS  Google Scholar 

  75. Saha, S., Majumdar, R., Roy, M., Dighe, R.R., Chakravarty, A.R.: An iron complex of dipyridophenazine as a potent photocytotoxic agent in visible light. Inorg. Chem. 48, 2652–2663 (2009)

    Article  CAS  PubMed  Google Scholar 

  76. Maity, B., Chakravarthi, B.V.S.K., Roy, M., Karande, A.A., Chakravarty, A.R.: DNA photocleavage and cytotoxic properties of ferrocene conjugates. Eur. J. Inorg. Chem. 2011, 1379–1386 (2011)

    Article  CAS  Google Scholar 

  77. Ameerunisha Begum, M.S., Saha, S., Nethaji, M., Chakravarty, A.R.: Iron(III) Schiff base complexes of arginine and lysine as netropsin mimics showing AT-selective DNA binding and photonuclease activity. J. Inorg. Biochem. 104, 477–484 (2010)

    Article  CAS  PubMed  Google Scholar 

  78. Sun, Y., Joyce, L.E., Dickson, N.M., Turro, C.: DNA photocleavage by an osmium(II) complex in the PDT window. Chem. Commun. 46, 6759–6761 (2010)

    Article  CAS  Google Scholar 

  79. Chen, G.J., Qiao, X., Gao, C.Y., Xu, G.J., Wang, Z.L., Tian, J.L., Xu, J.Y., Gu, W., Liu, X., Yan, S.P.: Synthesis, DNA binding, photo-induced DNA cleavage and cell cytotoxicity studies of a family of light rare earth complexes. J. Inorg. Biochem. 109, 90–96 (2012)

    Article  CAS  PubMed  Google Scholar 

  80. Chen, G.J., Wang, Z.G., Qiao, X., Xu, J.Y., Tian, J.L., Yan, S.P.: Synthesis, DNA binding, photo-induced DNA cleavage, cytotoxicity studies of a family of heavy rare earth complexes. J. Inorg. Biochem. 127, 39–45 (2013)

    Article  CAS  PubMed  Google Scholar 

  81. Jori, G., Camerin, M., Soncin, M., Guidolin, L., Coppellotti, O.: Antimicrobial photodynamic therapy: basic principles. In: Hamblin, M.R., Jori, G. (eds.) Photodynamic Inactivation of Microbial Pathogens: Medical and Environmental Applications Comprehensive Series in Photochemistry and Photobiology, vol. 11. Royal Society Publishing Cambridge, UK, (2011)

    Google Scholar 

  82. Lerch, M.M., Hansen, M.J., van Dam, G.M., Szymanski, W., Feringa, B.L.: Emerging targets in photopharmacology. Angewandt Chemie International Edition. 55, 10978–10999 (2016)

    Article  CAS  Google Scholar 

  83. Denis, T.G.S., Dai, T.H., Izikson, L., Astrakas, C., Anderson, R.R., Hamblin, M.R., Tegos, G.P.: All you need is light antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease. Virulence. 2, 509–520 (2011)

    Article  Google Scholar 

  84. Crespy, D., Landfester, K., Schubert, U.S., Schiller, A.: Potential photoactivated metallopharmaceuticals: from active molecules to supported drugs. Chem. Commun. 46, 6651–6662 (2010)

    Article  CAS  Google Scholar 

  85. Wang, Y.C., Wang, Y., Wang, Y.G., Murray, C.K., Hamblin, M.R., Hooper, D.C., Dai, T.H.: Antimicrobial blue light inactivation of pathogenic microbes: state of the art. Drug Resist. Updat. 33–35, 1–22 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  86. Raab, O.: Über die Wirkung fl uoreszcierender Stoff e aus Infusorien. Z. Biol. 39, 524 (1900)

    CAS  Google Scholar 

  87. Bown, S.G.: Photodynamic therapy for photochemists. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 371, 20120371 (2013)

    Article  CAS  Google Scholar 

  88. Wainwright, M.: Photoantimicrobials - a PACT against resistance and infection. Drugs Future. 29, 85–93 (2004)

    Article  CAS  Google Scholar 

  89. Wilson, M., Burns, T., Pratten, J., Pearson, G.J.: Bacteria in supragingival plaque samples can be killed by low-power laser-light in the presence of a photosensitizer. J. Appl. Bacteriol. 78, 569–574 (1995)

    Article  CAS  PubMed  Google Scholar 

  90. Merchat, M., Bertolini, G., Giacomini, P., Villanueva, A., Jori, G.: Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. J. Photochem. Photobiol. B. 32, 153–157 (1996)

    Article  CAS  PubMed  Google Scholar 

  91. Minnock, A., Vernon, D.I., Schofield, J., Griffiths, J., Parish, J.H., Brown, S.B.: Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria. J. Photochem. Photobiol. B. 32, 159–164 (1996)

    Article  CAS  PubMed  Google Scholar 

  92. Huang, H.Y., Banerjee, S., Sadler, P.J.: Recent advances in the design of targeted iridium(III) photosensitizers for photodynamic therapy. Chembiochem. 19, 1574–1589 (2018)

    Article  CAS  PubMed  Google Scholar 

  93. Monro, S., Colon, K.L., Yin, H., Roque 3rd, J., Konda, P., Gujar, S., Thummel, R.P., Lilge, L., Cameron, C.G., McFarland, S.A.: Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev. 119(2), 797–828 (2019)

    Article  CAS  PubMed  Google Scholar 

  94. Regiel-Futyra, A., Dabrowski, J.M., Mazuryk, O., Spiewak, K., Kyziol, A., Pucelik, B., Brindell, M., Stochel, G.: Bioinorganic antimicrobial strategies in the resistance era. Coord. Chem. Rev. 351, 76–117 (2017)

    Article  CAS  Google Scholar 

  95. Kharkwal, G.B., Sharma, S.K., Huang, Y.Y., Dai, T.H., Hamblin, M.R.: Photodynamic therapy for infections: clinical applications. Lasers Surg. Med. 43, 755–767 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  96. Skwor, T.A., Klemm, S., Zhang, H.Y., Schardt, B., Blaszczyk, S., Bork, M.A.: Photodynamic inactivation of methicillin-resistant staphylococcus aureus and Escherichia coli: a metalloporphyrin comparison. J. Photochem. Photobiol. B. 165, 51–57 (2016)

    Article  CAS  PubMed  Google Scholar 

  97. Lei, W.H., Zhou, Q.X., Jiang, G.Y., Zhang, B.W., Wang, X.S.: Photodynamic inactivation of Escherichia coli by Ru(II) complexes. Photochem. Photobiol. Sci. 10, 887–890 (2011)

    Article  CAS  PubMed  Google Scholar 

  98. Huang, H.Y., Zhang, P.Y., Qiu, K.Q., Huang, J.J., Chen, Y., Ji, L.N.A., Chao, H.: Mitochondrial dynamics tracking with two-photon phosphorescent terpyridyl iridium(III) complexes. Sci. Rep. 6, 20887 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Feuvrie, C., Maury, O., Le Bozec, H., Ledoux, I., Morrall, J.P., Dalton, G.T., Samoc, M., Humphrey, M.G.: Nonlinear optical and two-photon absorption properties of octupolar tris(bipyridyl)metal complexes. J. Phys. Chem. A. 111, 8980–8985 (2007)

    Article  CAS  PubMed  Google Scholar 

  100. Zhang, P.Y., Chiu, C.K.C., Huang, H.Y., Lam, Y.P.Y., Habtemariam, A., Malcomson, T., Paterson, M.J., Clarkson, G.J., O’Connor, P.B., Chao, H., Sadler, P.J.: Organoiridium photosensitizers induce specific oxidative attack on proteins within cancer cells. Angewandte Chemie-International Edition. 56, 14898–14902 (2017)

    Article  CAS  PubMed  Google Scholar 

  101. Wang, Y.C., Zhou, Q.X., Wang, Y., Ren, J., Zhao, H.Y., Wu, S.M., Yang, J.Y., Zhen, J., Luo, Y.P., Wang, X.S., Gu, Y.: In vitro photodynamic inactivation effects of Ru(II) complexes on clinical methicillin-resistant Staphylococcus aureus planktonic and biofilm cultures. Photochem. Photobiol. 91, 124–133 (2015)

    Article  CAS  PubMed  Google Scholar 

  102. Frei, A., Rubbiani, R., Tubafard, S., Blacque, O., Anstaett, P., Felgentrager, A., Maisch, T., Spiccia, L., Gasser, G.: Synthesis, characterization, and biological evaluation of new Ru(II) polypyridyl photosensitizers for photodynamic therapy. J. Med. Chem. 57, 7280–7292 (2014)

    Article  CAS  PubMed  Google Scholar 

  103. Abreu, F.D., Diogenes, I.C.N., Lopes, L.G.D., Sousa, E.H.S., de Carvalho, I.M.M.: Ruthenium(II) bipyridine complexes with pendant anthracenyl and naphthyl moieties: a strategy for a ROS generator with DNA binding selectivity. Inorg. Chim. Acta. 439, 92–99 (2016)

    Article  CAS  Google Scholar 

  104. Zhao, Y., Farrer, N.J., Li, H.L., Butler, J.S., McQuitty, R.J., Habtemariam, A., Wang, F.Y., Sadler, P.J.: De novo generation of singlet oxygen and ammine ligands by photoactivation of a platinum anticancer complex. Angewandte Chemie-International Edition. 52, 13633–13637 (2013)

    Article  CAS  PubMed  Google Scholar 

  105. Smith, N.A., Sadler, P.J.: Photoactivatable metal complexes: from theory to applications in biotechnology and medicine. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 371, 20120519 (2013)

    Article  CAS  Google Scholar 

  106. Ford, P.C.: Metal complex strategies for photo-uncaging the small molecule bioregulators nitric oxide and carbon monoxide. Coord. Chem. Rev. 376, 548–564 (2018)

    Article  CAS  Google Scholar 

  107. Karaoun, N., Renfrew, A.K.: A luminescent ruthenium(II) complex for light-triggered drug release and live cell imaging. Chem. Commun. 51, 14038–14041 (2015)

    Article  CAS  Google Scholar 

  108. Smith, N.A., Zhang, P.Y., Greenough, S.E., Horbury, M.D., Clarkson, G.J., McFeely, D., Habtemariam, A., Salassa, L., Stavros, V.G., Dowson, C.G., Sadler, P.J.: Combatting AMR: photoactivatable ruthenium(II)-isoniazid complex exhibits rapid selective antimycobacterial activity. Chem. Sci. 8, 395–404 (2017)

    Article  CAS  PubMed  Google Scholar 

  109. Garner, R.N., Pierce, C.G., Reed, C.R., Brennessel, W.W.: Photoinitiated treatment of mycobacterium using Ru(II) isoniazid complexes. Inorg. Chim. Acta. 461, 261–266 (2017)

    Article  CAS  Google Scholar 

  110. Chang, J.E., Oak, C.H., Sung, N., Jheon, S.: The potential application of photodynamic therapy in drug-resistant tuberculosis. J. Photochem. Photobiol. B. 150, 60–65 (2015)

    Article  CAS  PubMed  Google Scholar 

  111. Sung, N., Back, S., Jung, J., Kim, K.H., Kim, J.K., Lee, J.H., Ra, Y., Yang, H.C., Lim, C., Cho, S., Kim, K., Jheon, S.: Inactivation of multidrug resistant (MDR)-and extensively drug resistant (XDR)-Mycobacterium tuberculosis by photodynamic therapy. Photodiagn. Photodyn. Ther. 10, 694–702 (2013)

    Article  CAS  Google Scholar 

  112. Wareham, L.K., Poole, R.K., Tinajero-Trejo, M.: CO-releasing metal carbonyl compounds as antimicrobial agents in the post-antibiotic era. J. Biol. Chem. 290, 18999–19007 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Schairer, D.O., Chouake, J.S., Nosanchuk, J.D., Friedman, A.J.: The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence. 3, 271–279 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  114. de Sousa, A.P., Ellena, J., Gondim, A.C.S., Lopes, L.G.F., Sousa, E.H.S., de Vasconcelos, M.A., Teixeira, E.H., Ford, P.C., Holanda, A.K.M.: Antimicrobial activity of cis-[Ru(bpy)(2)(L)(L ′)](n+) complexes, where L=4-(4-chlorobenzoyl)pyridine or 4-(benzoyl)pyridine and L′ = Cl- or CO. Polyhedron. 144, 88–94 (2018)

    Article  CAS  Google Scholar 

  115. de Sousa, A.P., Fernandes, A.F., Paz, I.A., Nascimento, N.R.F., Ellena, J., Sousa, E.H.S., Lopes, L.G.F., Holanda, A.K.M.: A potential visible-light NO releaser: synthesis, reactivity and vasodilator properties. J. Braz. Chem. Soc. 28, 2117–2129 (2017)

    Google Scholar 

  116. de Sousa, A.P., Carvalho, E.M., Ellena, J., Sousa, E.H.S., de Sousaa, J.R., Lopes, L.G.F., Ford, P.C., Holanda, A.K.M.: Photochemical studies of cis-[Ru(bpy)(2)(4-bzpy)(CO)] (PF6)(2) and cis-[Ru (bpy)(2)(4-bzpy)(Cl)](PF6): blue light-induced nucleobase binding. J. Inorg. Biochem. 173, 144–151 (2017)

    Article  PubMed  CAS  Google Scholar 

  117. Carvalho, J.M.D., Batista, A.H.D., Nogueira, N.A.P., Holanda, A.K.M., de Sousa, J.R., Zampieri, D., Bezerra, M.J.B., Barreto, F.S., de Moraes, M.O., Batista, A.A., Gondim, A.C.S., Paulo, T.D.F., Lopes, L.G.D., Sousa, E.H.S.: A biphosphinic ruthenium complex with potent anti-bacterial and anti-cancer activity. New J. Chem. 41, 13085–13095 (2017)

    Article  Google Scholar 

  118. Candido, M.C.L., Oliveira, A.M., Silva, F.O.N., Holanda, A.K.M., Pereira, W.G., Sousa, E.H.S., Carneiro, Z.A., Silva, R.S., Lopes, L.G.F.: Photochemical and electrochemical study of the release of nitric oxide from [Ru(bpy)(2)L(NO)](PF6)(n) complexes (L = imidazole, 1-methylimidazole, sulfite and thiourea), toward the development of therapeutic photodynamic agents. J. Braz. Chem. Soc. 26, 1824–1830 (2015)

    Google Scholar 

  119. Rana, N., Jesse, H.E., Tinajero-Trejo, M., Butler, J.A., Tarlit, J.D., zur Muhlen, M.L.U., Nagel, C., Schatzschneider, U., Poole, R.K.: A manganese photosensitive tricarbonyl molecule [Mn(CO)(3)(tpa-kappa N-3)]Br enhances antibiotic efficacy in a multi-drug-resistant Escherichia coli. Microbiology-Sgm. 163, 1477–1489 (2017)

    Article  CAS  Google Scholar 

  120. Nobre, L.S., Seixas, J.D., Romao, C.C., Saraiva, L.M.: Antimicrobial action of carbon monoxide-releasing compounds. Antimicrob. Agents Chemother. 51, 4303–4307 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nobre, L.S., Jeremias, H., Romao, C.C., Saraiva, L.M.: Examining the antimicrobial activity and toxicity to animal cells of different types of CO-releasing molecules. Dalton Trans. 45, 1455–1466 (2016)

    Article  CAS  PubMed  Google Scholar 

  122. Arora, D.P., Hossain, S., Xu, Y.M., Boon, E.M.: Nitric oxide regulation of bacterial biofilms. Biochemistry. 54, 3717–3728 (2015)

    Article  CAS  PubMed  Google Scholar 

  123. Robinson, J.L., Adolfsen, K.J., Brynildsen, M.P.: Deciphering nitric oxide stress in bacteria with quantitative modeling. Curr. Opin. Microbiol. 19, 16–24 (2014)

    Article  CAS  PubMed  Google Scholar 

  124. Heilman, B.J., Gonzalez, M.A., Mascharak, P.K.: Photoactive metal nitrosyl and carbonyl complexes derived from designed auxiliary ligands: an emerging class of photochemotherapeutics. Prog. Inorg. Chem. 58(58), 185–224 (2014)

    CAS  Google Scholar 

  125. Silva, J.J.N., Guedes, P.M.M., Zottis, A., Balliano, T.L., Silva, F.O.N., Lopes, L.G.F., Ellena, J., Oliva, G., Andricopulo, A.D., Franco, D.W., Silva, J.S.: Novel ruthenium complexes as potential drugs for Chagas’s disease: enzyme inhibition and in vitro/in vivo trypanocidal activity. Br. J. Pharmacol. 160, 260–269 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Miranda, M.M., Panis, C., Cataneo, A.H.D., da Silva, S.S., Kawakami, N.Y., Lopes, L.G.D., Morey, A.T., Yamauchi, L.M., Andrade, C.G.T.D., Cecchini, R., da Silva, J.J.N., Sforcin, J.M., Conchon-Costa, I., Pavanelli, W.R.: Nitric oxide and Brazilian propolis combined accelerates tissue repair by modulating cell migration, cytokine production and collagen deposition in experimental leishmaniasis. PLoS One. 10, e0125101 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Pavanelli, W.R., da Silva, J.J.N., Panis, C., Cunha, T.M., Costa, I.C., de Menezes, M.C.N.D., Oliveira, F.J.D., Lopes, L.G.D., Cecchini, R., Cunha, F.D., Watanabe, M.A.E., Itano, E.N.: Experimental chemotherapy in paracoccidioidomycosis using ruthenium NO donor. Mycopathologia. 172, 95–107 (2011)

    Article  CAS  PubMed  Google Scholar 

  128. Heilman, B.J., John, J.S., Oliver, S.R.J., Mascharak, P.K.: Light-triggered eradication of acinetobacter baumannii by means of NO delivery from a porous material with an entrapped metal nitrosyl. J. Am. Chem. Soc. 134, 11573–11582 (2012)

    Article  CAS  PubMed  Google Scholar 

  129. Halpenny, G.M., Gandhi, K.R., Mascharak, P.K.: Eradication of pathogenic bacteria by remote delivery of NO via light triggering of nitrosyl-containing materials. ACS Med. Chem. Lett. 1, 180–183 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Heinrich, T.A., Tedesco, A.C., Fukuto, J.M., da Silva, R.S.: Production of reactive oxygen and nitrogen species by light irradiation of a nitrosyl phthalocyanine ruthenium complex as a strategy for cancer treatment. Dalton Trans. 43, 4021–4025 (2014)

    Article  CAS  PubMed  Google Scholar 

  131. Dolansky, J., Henke, P., Mala, Z., Zarska, L., Kubat, P., Mosinger, J.: Antibacterial nitric oxide- and singlet oxygen-releasing polystyrene nanoparticles responsive to light and temperature triggers. Nanoscale. 10, 2639–2648 (2018)

    Article  CAS  PubMed  Google Scholar 

  132. Rohrabaugh, T.N., Collins, K.A., Xue, C., White, J.K., Kodanko, J.J., Turro, C.: New Ru(ii) complex for dual photochemotherapy: release of cathepsin K inhibitor and (1)O2 production. Dalton Trans. 47, 11851–11858 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

E. H. S. Sousa (CNPq researcher fellowship # 308383/2018-4, Universal 403866/2016-2), L. G. F. Lopes (CNPq researcher fellowship #303355/2018-2, FUNCAP/PRONEX PR2 0101-00030.01.00/15, CAPES (23038.008968/2012-87 and 23038.000936/2018-46)) and CAPES/PRINT (8887.311905/2018-00) are thankful for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz G. F. Lopes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Carvalho, I.M.M., Gouveia, F.S., Sousa, E.H.S., Lopes, L.G.F. (2022). Metal Complexes as DNA Cleavage and Antimicrobial Agents. In: Bahnemann, D., Patrocinio, A.O.T. (eds) Springer Handbook of Inorganic Photochemistry. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-63713-2_36

Download citation

Publish with us

Policies and ethics