Skip to main content

Photochromic Reactions in Coordination Compounds

  • Chapter
  • First Online:
Springer Handbook of Inorganic Photochemistry

Abstract

Photochromic coordination compounds can be broadly divided into two different categories according to the photochromic reaction mechanisms, photo-induced linkage isomerization of the metal-ligand coordination and photochromism of the coordinated organic ligand. Different ambidentate ligands capable of forming different coordination modes with transition metal complexes have been designed to modify and tune the photochromic properties. On the other hand, the design of photochromic coordination compounds built on ligands of different organic photochromic families has received tremendous attention. Through coordination of these ligands into transition metal complexes, it opens up the photochromism from the triplet excited-state due to the strong spin-orbit coupling. By judicious design, efficient photosensitization of the photochromic ligands through intramolecular triplet-triplet energy transfer can be achieved. Moreover, photoswitching of the functional properties of the coordination unit through the photochromic reaction has also been demonstrated. In this chapter, the photochromic properties of these coordination compounds and their potential applications have been described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirshberg, Y.: Photochromy in the bianthrone series. C. R. Acad. Sci. 231, 903–904 (1950)

    CAS  Google Scholar 

  2. Brown, G.H.: Photochromism Techniques of Chemistry, vol.3: Photochromism. Wiley- Interscience, New York (1971)

    Google Scholar 

  3. Fritsche, J.: Photochromism of tetracene, Comptes Rendus. Acad. Sci. 69, 1035 (1867)

    Google Scholar 

  4. Dürr, H., Bous-Laurent, H.: Photochromism-Moleucles and Systems. Elsevier, Amsterdam (1990)

    Google Scholar 

  5. Crano, J.C., Guglielmetti, R.J.: Organic Photochromic and Thermochromic Compounds Main Photochromic Families, vol. 1. Plenum Press, New York/London (1999)

    Google Scholar 

  6. Tian, H., Zhang, J.: Photochromic Materials: Preparation, Properties and Applications. Wiley-VCH, Weinheim (2016)

    Google Scholar 

  7. Wong, W.Y., Abd-El-Aziz, A.S.: Molecular Design and Applications of Photofunctional Polymers and Materials. Royal Society Chemistry, Cambridge (2012)

    Book  Google Scholar 

  8. Dürr, H.: Perspectives in photochromism: a novel system based on the 1,5-elextrocylization of heteroanalogous pentadienyl anions. Angew. Chem. Int. Ed. Engl. 28(4), 413–431 (1989)

    Article  Google Scholar 

  9. Bouas-Laurent, H., Dürr, H.: Organic photochromism: IUPAC technical report. Pure Appl. Chem. 73, 639–665 (2001)

    Article  CAS  Google Scholar 

  10. Irie, M.: Diarylethenes for memories and switches. Chem. Rev. 100(5), 1685–1716 (2000)

    Article  CAS  PubMed  Google Scholar 

  11. Waldeck, D.H.: Photoisomerization dynamics of stilbenes. Chem. Rev. 91(3), 415–436 (1991)

    Article  CAS  Google Scholar 

  12. Tian, H., Yang, S.: Recent progresses on diarylethene based photochromic switches. Chem. Soc. Rev. 33(2), 85–97 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. Pu, S., Jiang, D., Liu, W., Liu, G., Cui, S.: Multi-addressable molecular switches based on photochromic diarylethenes bearing a rhodamine unit. J. Mater. Chem. 22(8), 3517–3526 (2012)

    Article  CAS  Google Scholar 

  14. Ko, C.C., Yam, V.W.W.: Coordination compounds with photochromic ligands: ready tunability and visible-light-sensitized photochromism. Acc. Chem. Res. 51(1), 149–159 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. Saltiel, A.: Perdeuteriostilbene. The role of phantom states in cis-trans photoisomerization of stilbenes. J. Am. Chem. Soc. 89(4), 1036–1037 (1967)

    Article  CAS  Google Scholar 

  16. Ko, C.C., V. W. W. Yam (J. W. Steed, P. A. Gale): Photoswitching Materials: Supramolecular Chemistry: From Molecules to Nanomaterials. Wiley, New Jersey (2012)

    Google Scholar 

  17. Kopelman, R.A., Snyder, S.M., Frank, N.L.: Tunable photochromism of spiroxazines via metal coordination. J. Am. Chem. Soc. 125(45), 13684–13685 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. Matsuda, K., Takayama, K., Irie, M.: Photochromism of metal complexes composed of diarylethene ligands. Inorg. Chem. 43(2), 482–489 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. Calligaris, M.: Structure and bonding in metal sulfoxide complexes: an update. Corrd. Chem. Rev. 248(3–4), 351–375 (2004)

    Article  CAS  Google Scholar 

  20. Yam, V.W.W., Yang, Y., Zhang, J., Chu, B.W.K., Zhu, N.: Synthesis, characterization, and photoisomerization studies of azo- and stilbene-containing surfactant rhenium(I) complexes. Organometallics. 20(23), 4911–4918 (2001)

    Article  CAS  Google Scholar 

  21. Ko, C.C., Kwok, W.M., Yam, V.W.W., Phillips, D.L.: Triplet MLCT photosensitization of the ring-closing reaction of diarylethenes by design and synthesis of a photochromic rhenium(I) complex of a diarylethene-containing 1,10-phenanthroline ligand. Chem. Eur. J. 12(22), 5840–5848 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. Ko, C.C., Yam, V.W.W.: Transition metal complexes with photochromic ligands-photosensitization and photoswitchable properties. J. Mater. Chem. 20(11), 2063–2070 (2010)

    Article  CAS  Google Scholar 

  23. Pardo, R., Zayat, M., Levy, D.: Photochromic organic-inorganic hybrid materials. Chem. Soc. Rev. 40(2), 672–687 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. Nakai, H., Isobe, K.: Photochromism of organometallic compounds with structural rearrangement. Coord. Chem. Rev. 254(21–22), 2652–2662 (2010)

    Article  CAS  Google Scholar 

  25. Tian, H., Feng, Y.: Next step of photochromic switches. J. Mater. Chem. 18(14), 1617–1622 (2008)

    Article  CAS  Google Scholar 

  26. Coppens, P., Novozhilova, I., Kovalevsky, A.: Photoinduced linkage isomers of transition-metal nitrosyl compounds and related complexes. Chem. Rev. 102(4), 861–883 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. Rack, J.J.: Electron transferred sulfoxide isomerization in ruthenium and osmium complexes. Coord. Chem. Rev. 253(1–2), 78–85 (2009)

    Article  CAS  Google Scholar 

  28. Bitterwolf, T.E.: Photochemical nitrosyl linkage isomerism/metastable states. Coord. Chem. Rev. 250(9–10), 1196–1207 (2006)

    Article  CAS  Google Scholar 

  29. Schaniel, D., Woike, T., Kushch, L., Yagubskii, E.: Photoinduced nitrosyl linkage isomers in complexes based on the photochromic cation [RuNO(NH3)5]3+ with the paramagnetic anion [Cr(CN)6]3−, and the diamagnetic anions [Co(CN)6]3− and [ZrF6]2−. Chem. Phys. 340(1–3), 211–216 (2007)

    Article  CAS  Google Scholar 

  30. Jørgensen, S.M.: Zur constitution der kobalt-, chrom- und rhodiumbasen. V, Z. Anorg. Chem. 5, 147–196 (1894)

    Article  Google Scholar 

  31. Jørgensen, S.M.: Zur constitution der kobalt-, chrom- und rhodiumbasen. Z. Anorg. Chem. 19, 109–157 (1899)

    Article  Google Scholar 

  32. Werner, A.: Über strukturisomere salze der rhodanwasserstoffsäure und der salpetrigen säure. Ber. Deut. Chem. Ges. 40, 765 (1907)

    Article  CAS  Google Scholar 

  33. Fomitchev, D.V., Coppens, P.: Light-induced metastable linkage isomers of transition metal nitrosyls. Comments Inorg. Chem. 21(1–3), 131–148 (1999)

    Article  CAS  Google Scholar 

  34. Birk, J.P., Espenson, J.H.: Linkage isomerism of cyanide ion: kinetics and mechanisms of reactions of chromium(II) and cyanocobalt(III) complexes. J. Am. Chem. Soc. 90(10), 1154–1162 (1968)

    Google Scholar 

  35. Burmeister, J.L., Gysling, H.J., Lim, J.C.: Inorganic linkage isomerism of the selenocyanate ion. J. Am. Chem. Soc. 91(1), 44–47 (1969)

    Article  CAS  Google Scholar 

  36. Hauser, U., Oestreich, V., Rohrweck, H.D.Z.: On optical dispersion in transparent molecular systems. I. Mössbauer resonance observation of a new kind of isomeric molecular states genereated by polarized light. Phys. A. 280, 17–25 (1977)

    CAS  Google Scholar 

  37. Hauser, U., Oestreich, V., Rohrweck, H.D.Z.: On optical dispersion in transparent molecular systems. II. Properties of the new kind of isomeric molecular states generated by coherent light. Phys. A. 280, 125–130 (1977)

    CAS  Google Scholar 

  38. Carducci, M.D., Pressprich, M.R., Coppens, P.: Diffraction studies of photoexcited crystals: metastable nitrosyl-linkage isomers of sodium nitroprusside. J. Am. Chem. Soc. 119(11), 2669–2678 (1997)

    Article  CAS  Google Scholar 

  39. Coppens, P., Fomitchev, D.V., Carducci, M.D., Culp, K.: Crystallography of molecular excited states. Transition-metal nitrosyl complexes and the study of transient species. J. Chem. Soc. Dalton. Trans. (6), 865–872 (1998)

    Google Scholar 

  40. Delley, B., Schefer, J.: Giant lifetime of optically excited states and the elusive structure of sodiumnitroprusside. J. Chem. Phys. 107(23), 10067–10074 (1997)

    Article  CAS  Google Scholar 

  41. Boulet, P., Buchs, M., Chermette, H., Daul, C., Gilardoni, F., Rogemond, F., Schläpfer, C.W., Weber, J.J.: DFT investigation of metal complexes containing a nitrosyl ligand. 1. Ground state and metastable states. Phys. Chem. A. 105(39), 8991–8998 (2001)

    Article  CAS  Google Scholar 

  42. Boulet, P., Buchs, M., Chermette, H., Daul, C., Furet, E., Gilardoni, F., Rogemond, F., Schläpfer, C.W., Weber, J.J.: DFT investigation of metal complexes containing a nitrosyl ligand. 2. excited states. Phys. Chem. A. 105(39), 8999–9003 (2001)

    Article  CAS  Google Scholar 

  43. Boulet, P., Chermette, H., Weber, J.: Photochemistry of the CpNiNO complex. A theoretical study using density functional theory. Inorg. Chem. 40(27), 7032–7039 (2001)

    Article  CAS  PubMed  Google Scholar 

  44. Woike, T., Kirchner, W., Schetter, G., Barthel, T., Hyung-sang, K., Haussühl, S.: New information storage elements on the basis of metastable electronic states. Optics Commun. 106(1–3), 6–10 (1994)

    Article  CAS  Google Scholar 

  45. Chrichton, O., Rest, A.T.: Photochemistry of (ƞ-cyclopentadienyl) nitrosylnickel in frozen gas matrices at 20K. Infrared spectroscopic evidence for mono- and dicarbonyl (ƞ-cyclopentadienyl) nickel in carbon monoxide matrices and for a species formed by photoionization or photoelectron transfer in inert matrices. J. Chem. Soc. Dalton. (10), 986–993 (1977)

    Google Scholar 

  46. Woike, T., Zöllner, H., Krasser, W., Haussühl, S.: Raman-spectroscopic and differential scanning calorimetric studies of the light induced metastable states in K2[RuCl5NO]. Solid State Commun. 73(2), 149–152 (1990)

    Article  CAS  Google Scholar 

  47. Woike, T., Haussühl, S.: Infrared-spectroscopic and differential scanning calorimetric studies of the two light-induced metastable states in K2[Ru(NO2)4(OH)(NO)]. Solid State Commun. 86(5), 333–337 (1993)

    Article  CAS  Google Scholar 

  48. Güida, J.A.: Infrared absorption spectra of sodium pentacyanonitrosylosmate(II) dihydrate in two excited electronic metastable states. Inorg. Chem. 34(16), 4113–4116 (1995)

    Article  Google Scholar 

  49. Cormary, B., Ladeira, S., Jacob, K., Lacroix, P.G., Woike, T., Schaniel, D., Malfant, I.: Structural influence on the photochromic response of a series of ruthenium mononitrosyl complexes. Inorg. Chem. 51(14), 7492–7501 (2012)

    Article  CAS  PubMed  Google Scholar 

  50. Kim, C., Novozhilova, I., Goodman, M.S., Bagley, K.A., Coppens, P.: On the photochemical behavior of the [Ru(NH3)4(NO)nicotinamide]3+ cation and the relative stability of light-induced metastable isonitrosyl isomers of Ru complexes. Inorg. Chem. 39(25), 5791–5795 (2000)

    Article  CAS  PubMed  Google Scholar 

  51. Schaniel, D., Cormary, B., Malfant, I., Valade, L., Woike, T., Delley, B., Krämer, K.W., Güdel, H.-U.: Photogeneration of two metastable NO linkage isomers with high populations of up to 76% in trans-[RuCl(py)4(NO)][PF6]2·1/2H2O. Phys. Chem. Chem. Phys. 9(28), 3717–3724 (2007)

    Article  CAS  PubMed  Google Scholar 

  52. Grenthe, I., Nordin, E.: Nitrito-nitro linkage isomerization in the solid state. 1. X-ray crystallographic studies of trans-bis(ethylenediamine)(isothiocyanato)nitrito- and trans-bis(ethylenediamine)(isothiocyanato)nitrocobalt(III) perchlorate and iodide. Inorg. Chem. 18(4), 1109–1116 (1979)

    Article  CAS  Google Scholar 

  53. Warren, M.R., Brayshaw, S.K., Johnson, A.L., Schiffers, S., Raithby, P.R., Easun, T.L., George, M.W., Warren, J.E., Teat, S.J.: Reversible 100% linkage isomerization in a single-crystal to single-crystal transformation: photocrystallographic identification of the metastable [Ni(dppe)(ƞ1-ONO)Cl] isomer. Angew. Chem. 121, 5821–5824 (2009)

    Article  Google Scholar 

  54. Warren, M.R., Brayshaw, S.K., Johnson, A.L., Schiffers, S., Raithby, P.R., Easun, T.L., George, M.W., Warren, J.E., Teat, S.J.: Reversible 100% linkage isomerization in a single-crystal to single-crystal transformation: photocrystallographic identification of the metastable [Ni(dppe)(ƞ1-ONO)Cl] isomer. Angew. Chem. Int. Ed. 48(31), 5711–5714 (2009)

    Article  CAS  Google Scholar 

  55. Hatcher, L.E., Warren, M.R., Allan, D.R., Brayshaw, S.K., Johnson, A.L., Fuertes, S., Schiffers, S., Stevenson, A.J., Teat, S.J., Woodall, C.H., Raithby, P.R.: Metastable linkage isomerism in [Ni(Et2dien)(NO2)2]: a combined thermal and photocrystallographic structural investigation of a nitro/nitrito interversion. Angew. Chem. Int. Ed. 50(36), 8371–8374 (2011)

    Article  CAS  Google Scholar 

  56. Schaniel, D., Mockus, N., Woike, T., Klein, A., Sheptyakov, D., Todorova, T., Delley, B.: Reversible photoswitching between nitrio-N and nitrito-O isomers in trans-[Ru(py)4(NO2)2]. Phys. Chem. Chem. Phys. 12(23), 6171–6178 (2010)

    Article  CAS  PubMed  Google Scholar 

  57. Kubas, G.J.: Chemical transformations and facile disproportionation of sulfur dioxide on transition metal complexes. Acc. Chem. Res. 27(7), 183–190 (1994)

    Article  CAS  Google Scholar 

  58. Johnson, D.A., Dew, V.C.: Photochemical linkage isomerization in coordinated SO2. Inorg. Chem. 18(11), 3273–3274 (1979)

    Article  CAS  Google Scholar 

  59. Kovalevsky, A.Y., Bagley, K.A., Coppens, P.: The first photocrystallographic evidence for light-induced metastable linkage isomers of ruthenium sulfur dioxide complexes. J. Am. Chem. Soc. 124(31), 9241–9248 (2002)

    Article  CAS  PubMed  Google Scholar 

  60. Kovalevsky, A.Y., Bagley, K.A., Cole, J.M., Coppens, P.: Light-induced metastable linkage isomers of ruthenium sulfur dioxide complexes. Inorg. Chem. 42(1), 140–147 (2003)

    Article  CAS  PubMed  Google Scholar 

  61. T. T. To, Heilweil, E.J.: Development of ultrafast photochromic organometallics and photoinduced linkage isomerization of arene chromium carbonyl derivatives. J. Phys. Chem. A. 113(12), 2666–2676 (2009)

    Article  CAS  Google Scholar 

  62. McClure, B.A., Rack, J.J.: Isomerization in photochromic ruthenium sulfoxide complexes. Eur. J. Inorg. Chem. 2010(25), 3895–3904 (2010)

    Article  CAS  Google Scholar 

  63. Rack, J.J., Winkler, J.R., Gray, H.B.: Phototriggerd Ru(II)-dimethylsulfoxide linkage isomerization in crystals and films. J. Am. Chem. Soc. 123(10), 2432–2433 (2001)

    Article  CAS  PubMed  Google Scholar 

  64. Rack, J.J., Mockus, N.V.: Room-temperature photochromism in cis- and trans-[Ru(bpy)2(dmso)2]2+. Inorg. Chem. 42(19), 5792–5794 (2003)

    Article  CAS  PubMed  Google Scholar 

  65. Rack, J.J., Rachford, A.A., Shelker, A.M.: Turning off phototriggered linkage isomerizations in ruthenium dimethyl sulfoxide complexes. Inorg. Chem. 42(23), 7357–7359 (2003)

    Article  CAS  PubMed  Google Scholar 

  66. Mockus, N.V., Petersen, J.L., Rack, J.J.: Subnanosecond isomerization in an osmium-dimethyl sulfoxide. Inorg. Chem. 45(1), 8–10 (2006)

    Article  CAS  PubMed  Google Scholar 

  67. Smith, M.K., Gibson, J.A., Young, C.G., Broomhead, J.A., Junk, P.C., Keene, F.R.: Photoinduced ligand isomerization in dimethyl sulfoxide complexes of ruthenium(II). Eur. J. Inorg. Chem. 2000(6), 1365–1370 (2000)

    Article  Google Scholar 

  68. Butcher, D.P., Rachford, A.A., Petersen, J.L., Rack, J.J.: Phototriggered S→O isomerization of ruthenium-bond chelating sulfoxide. Inorg. Chem. 45(23), 9178–9180 (2006)

    Article  CAS  PubMed  Google Scholar 

  69. Rachford, A.A., Rack, J.J.: Picosecond isomerization in photochromic ruthenium-dimethyl sulfoxide complexes. J. Am. Chem. Soc. 128(44), 14318–14324 (2006)

    Article  CAS  PubMed  Google Scholar 

  70. Ciofini, I., Daul, C.A., Adamo, C.: Phototriggered linkage isomerization in ruthenium-dimethylsulfoxide complexes: insights from theory. J. Phys. Chem. A. 107(50), 11182–11190 (2003)

    Article  CAS  Google Scholar 

  71. Sylvester, S.O., Cole, J.M., Waddell, P.G.: Photoconversion bonding mechanism in ruthenium sulfur dioxide linkage photoisomers revealed by in situ diffraction. J. Am. Chem. Soc. 134(29), 11860–11863 (2012)

    Article  CAS  PubMed  Google Scholar 

  72. DeWitt, K.M., T. T. To, Heilweil, E.J., Berkey, T.J.: Linkage isomerization via geminate cage or bimolecular mechanisms: time-resolved investigations of an organometallic photochrome. J. Phys. Chem. B. 119(17), 5531–5536 (2015)

    Article  CAS  PubMed  Google Scholar 

  73. Li, H., Zhang, L., Zheng, I., Li, X., Fan, X., Zhao, Y.: Photoisomerization mechanism of ruthenium sulfoxide complexes: role of the metal-centered excited state in the bond rupture and bond construction processes. Chem. Eur. J. 22(40), 14285–14292 (2016)

    Article  CAS  PubMed  Google Scholar 

  74. Liu, X., Wang, X., Xu, B., Andrews, L.: Spectroscopic observation of photo-induced metastable linkage isomers of coinage metal (Cu, Ag, Au) sulfur dioxide complexes. Phys. Chem. Chem. Phys. 16(6), 2607–2620 (2014)

    Article  CAS  PubMed  Google Scholar 

  75. Choudhuri, M.M.R., Crutchley, R.J.: Phenylcyanamide ligand control of photo-induced linkage isomerism. Inorg. Chem. 52(24), 14404–14410 (2013)

    Article  CAS  PubMed  Google Scholar 

  76. Kobayashi, A., Komatsu, K., Ohara, H., Kamada, W., Chishina, Y., Tsuge, K., Chang, H.C., Kato, M.: Photo- and vapor-controlled luminescence of rhombic dicopper(I) complexes containing dimethyl sulfoxide. Inorg. Chem. 52(24), 13188–13198 (2013)

    Article  CAS  PubMed  Google Scholar 

  77. McClure, B.A., Rack, J.J.: Two-color reversible switching in a photochromic ruthenium sulfoxide complex. Angew. Chem. Int. Ed. 48(45), 8556–8558 (2009)

    Article  CAS  Google Scholar 

  78. Scholz, M.S., Bull, J.N., Carrascosa, E., Adamson, B.D., Kosgei, G.K., Rack, J.J., Bieske, E.J.: Linkage photoisomerization of an isolated ruthenium sulfoxide complex: sequential versus concerted rearrangement. Inorg. Chem. 57(9), 5701–5706 (2018)

    Article  CAS  PubMed  Google Scholar 

  79. Mockus, N.V., Rabinovich, D., Petersen, J.L., Rack, J.J.: Femosecond isomerization in a photochromic molecular switch. Angew. Chem. Int. Ed. 47(8), 1458–1461 (2008)

    Article  CAS  Google Scholar 

  80. Garg, K., King, A.W., Rack, J.J.: One photo yields two isomerizations: large atomic displacements during electronic excited-state dynamics in ruthenium sulfoxide complexes. J. Am. Chem. Soc. 136(5), 1856–1863 (2015)

    Article  CAS  Google Scholar 

  81. T. T. To, Barnes, C.E., Burkey, T.J.: Bistable photochromic organometallics based on linkage isomerization: photochemistry of dicarbonyl (ƞ5-methylcyclopentadienyl) manganese(I) derivatives with a bifunctional, nonchelating ligand. Organometallics. 23(11), 2708–2714 (2004)

    Article  CAS  Google Scholar 

  82. T. T. To, Duke, C.B., Junker, C.S., O’Brien, C.M., Ross, C.R., Barnes, C.E., Webster, C.E., Burkey, T.J.: Linkage isomerization as a mechanism for photochromic materials: cyclopentadienylmanganese tricarbonyl derivatives with chelatable functional groups. Organometallics. 27(2), 289–296 (2008)

    Article  CAS  Google Scholar 

  83. Zarnegar, P.P., Whitten, D.G.: Photochemistry of ruthenium complexes. Ligand isomerization via orbitally different excited states. J. Am. Chem. Soc. 93(15), 3776–3777 (1971)

    Article  Google Scholar 

  84. Wrighton, M., Morse, D.L., Pdungsap, L.: Intraligand lowest excited states in tricarbonylhalobis(styrylpyridine)Rhenium(I) complexes. J. Am. Chem. Soc. 97(8), 2073–2079 (1975)

    Article  CAS  Google Scholar 

  85. Becker, R.S., Roy, J.K.: The spectroscopy and photosensitization of various photochromic spiropyrans. J. Phys. Chem. 69(4), 1435–1436 (1965)

    Article  CAS  Google Scholar 

  86. Hobley, J., Wilkinson, F.: Photochromism of naphthoxazine-spiro-indolines by direct excitation and following sensitisation by triplet-energy donors. J. Chem. Soc. Faraday Trans. 92(8), 1323–1330 (1996)

    Article  CAS  Google Scholar 

  87. Zarnegar, P.P., Bock, C.R., Whitten, D.G.: Photoreactions of transition metal complexes. Ligand reactivity as a prober for excited-state characterization. J. Am. Chem. Soc. 95(13), 4367–4372 (1973)

    Article  CAS  Google Scholar 

  88. Yam, V. W.-W., Lau, V. C.-Y., Wu, L.-X.: Synthesis, photophysical, photochemical and electrochemical properties of rhenium(I) diimine complexes with photoisomerizable pyridyl-azo, −ethenyl or -ethyl ligands, J. Chem. Soc., Dalton Trans. 0(9), 1461–1468 (1998)

    Google Scholar 

  89. Busby, M., Matousek, P., Towrie, M., Vlček Jr., A.: Ultrafast excited-state dynamics preceding a ligand trans-cis isomerization of fac-[Re(Cl)(CO)3(t-4-styrylpyridine)2] and fac-[Re(t-4-styrylpyridine)(CO)3(2,2′-bipyridine)]. J. Phys. Chem. A. 109(13), 3000–3008 (2005)

    Article  CAS  PubMed  Google Scholar 

  90. Yam, V.W.-W., Lau, V.C.-Y., Cheung, K.-K.: Synthesis, photophysics and photochemistry of novel luminescent rhenium(I) photoswitchable materials. J. Chem. Soc. Chem. Commun. 0(2), 259–261 (1995)

    Article  CAS  Google Scholar 

  91. Bossert, J., Daniel, C.: trans-cis Photoisomerization of the styrylpyridine ligand in [Re(CO)3(2,2′-bipyridine)(t-4-styrylpyridine)]+: role of the metal-to-ligand charge-transfer excited states. Chem. Eur. J. 12(18), 4835–4843 (2006)

    Article  CAS  PubMed  Google Scholar 

  92. Lewis, J.D., Pertuz, R.N., Moore, J.N.: Proton-controlled photoisomerization: rhenium(I) tricarbonyl bipyridine linked to amine or azacrown ether groups by a styryl pyridine bridging ligand. Chem. Commun. 0(19), 1865–1866 (2000)

    Article  CAS  Google Scholar 

  93. Sun, S.-S., Lees, A.J.: Synthesis, photophysical properties, and photoinduced luminescence switching of trinulear diimine rhenium(I) tricarbonyl complexes linked by an isomerizable stilbene-like ligand. Organometallics. 21(1), 39–49 (2002)

    Article  CAS  Google Scholar 

  94. Wenger, O.S., Henling, L.M., Day, M.W., Winkler, J.R., Gray, H.B.: Photoswitchable luminescence of rhenium(I) tricarbonyl diimines. Inorg. Chem. 43(6), 2043–2048 (2004)

    Article  CAS  PubMed  Google Scholar 

  95. Tissot, A., Boillot, M.-L., Pillet, S., Codjovi, E., Boukheddaden, K., Daku, L.M.L.: Unidirectional photoisomerization of styrylpyridine for switching the magnetic behavior of an iron(II) complex: a MLCT pathway in crystalline solids. J. Phys. Chem. C. 114(49), 21715–21722 (2010)

    Article  CAS  Google Scholar 

  96. Hasegawa, Y., Takahashi, K., Kume, S., Nishihara, H.: Complete solid state photoisomerization of bis(dipyrazolylstyrylpyridine) iron(II) to charge magnetic properties. Chem. Commun. 47(24), 6846–6848 (2011)

    Article  CAS  Google Scholar 

  97. Takahashi, K., Hasegawa, Y., Sakamoto, R., Nishikawa, M., Kume, S., Nishibori, E., Nishihara, H.: Solid-state ligand-driven light-induced spin change at ambient temperatures in bis(dipyrazolylstyrylpyridine) iron(II) complexes. Inorg. Chem. 51(9), 5188–5198 (2012)

    Article  CAS  PubMed  Google Scholar 

  98. Sakamoto, R., Kume, S., Sugimoto, M., Nishihara, H.: Trans-cis photoisomerization of azobenzene-conjugated dithiolato-bipyridine platinum(II) complexes: extension of photoresponse to longer wavelengths and photocontrollable tristability. Chem. Eur. J. 15(6), 1429–1439 (2009)

    Article  CAS  PubMed  Google Scholar 

  99. Sakamoto, R., Murata, M., Kume, S., Sampei, H., Sugimoto, M., Nishihara, H.: Photo-controllable tristability of a dithiolato-bipyridine-Pt(II) complex molecule containing two azobenzene moieties. Chem. Commun. 0(9), 1215–1217 (2005)

    Article  CAS  Google Scholar 

  100. Yam, V.W.-W., Ko, C.-C., Wu, L.-X., Wong, K.M.-C., Cheung, K.K.: Synthesis, crystal structure, and photochromic properties of rhenium(I) complexes containing the spironaphthoxazine moiety. Organometallics. 19(10), 1820–1822 (2000)

    Article  CAS  Google Scholar 

  101. Ko, C.-C., Wu, L.-X., Wong, K.M.-C., Zhu, N., Yam, V.W.-W.: Synthesis, characterization and photochromic studies of spirooxazine-containing 2,2′-bipyridine ligands and their rhenium(I) tricarbonyl complexes. Chem. Eur. J. 10(3), 766–776 (2004)

    Article  CAS  PubMed  Google Scholar 

  102. Li, Y.-G., Tam, A.Y.-Y., Wong, K.M.-C., Li, W., Wu, L.-X., Yam, V.W.-W.: Synthesis, characterization, and the photochromic, luminescence, metallogelation and liquid-crystalline properties of multifunctional platinum(II) bipyridine complexes. Chem. Eur. J. 17(29), 8048–8059 (2011)

    Article  CAS  PubMed  Google Scholar 

  103. Jukes, R.T.F., Bozic, B., Hartl, F., Belser, P., De Cola, L.: Synthesis, photophysical, photochemical, and redox properties of nitrospiropyrans substituted with Ru or Os tris(bipyridine) complexes. Inorg. Chem. 45(20), 8326–8341 (2006)

    Article  CAS  PubMed  Google Scholar 

  104. Jukes, R.T.F., Bozic, B., Belser, P., De Cola, L., Hartl, F.: Photopysical and redox properties of dinuclear Ru and Os polypyridyl complexes with incorporated photostable spiropyran bridge. Inorg. Chem. 48(4), 1711–1721 (2009)

    Article  CAS  PubMed  Google Scholar 

  105. Jukes, R.T.F., Kühni, J., Salluce, N., Belser, P., De Cola, L., Hartl, F.: Photochemical, photophysical and redox properties of novel fulgimide derivatives with attached 2,2′-bipyridine (bpy) and [M(bpy)3]2+ (M = Ru and Os) moieties. Dalton Trans. 20, 3993–4002 (2009)

    Article  CAS  Google Scholar 

  106. Jukes, R.T.F., Adamo, V., Hartl, F., Belser, P., De Cola, L.: Photochromic dithienylethene derivatives containing Ru(II) or Os(II) metal units, sensitized photocyclization from a triplet state. Inorg. Chem. 43(9), 2779–2792 (2004)

    Article  CAS  PubMed  Google Scholar 

  107. Yam, V.W.W., Ko, C.C., Zhu, N.: Photochromic and luminescence switching properties of a versatile diarylethene-containing 1,10-phenanthroline ligand and its rhenium(I) complex. J. Am. Chem. Soc. 126(40), 12734–12735 (2004)

    Article  CAS  PubMed  Google Scholar 

  108. Lee, J.K.-W., Ko, C.-C., Wong, K.M.-C., Zhu, N., Yam, V.W.-W.: A photochromic platinum(II) bis(alkynyl) complex containing a versatile 5,6-dithienyl-1,10-phenanthroline. Organometallics. 26(1), 12–15 (2007)

    Article  CAS  Google Scholar 

  109. Belser, P., de Cola, L., Hartl, F., Adamo, V., Bozic, B., Chriqui, Y., Iyer, V.M., Jukes, R.T.F., Kühni, J., Querol, M., Roma, S., Salluce, N.: Photochromic switches incorporated in bridging ligands: a new tool to modulate energy-transfer processes. Adv. Funct. Mater. 16(2), 195–208 (2006)

    Article  CAS  Google Scholar 

  110. Ngan, T.-W., Ko, C.-C., Zhu, N., Yam, V.W.-W.: Synthesis, luminescence switching, and electrochemical studies of photochromic dithienyl-1,10-phenanthroline zinc(II) bis(thiolate) complexes. Inorg. Chem. 46(4), 1144–1152 (2007)

    Article  CAS  PubMed  Google Scholar 

  111. Lee, P.H.-M., Ko, C.-C., Zhu, N., Yam, V.W.-W.: Metal coordination-assisted near-infrared photochromic behavior: a large perturbation on absorption wavelength properties of N, N-donor ligands containing diarylethene derivatives by coordination to the rhenium(I) metal center. J. Am. Chem. Soc. 129(19), 6058–6059 (2007)

    Article  CAS  PubMed  Google Scholar 

  112. Wong, H.-L., Zhu, N., Yam, V.W.-W.: Photochromic alkynylplatinum(II) diamine complexes containing a versatile dithienylethene-functionalized 2-(2′-pyridyl)imidazole ligand. J. Organomet. Chem. 751, 430–437 (2014)

    Article  CAS  Google Scholar 

  113. Tan, W., Zhang, Q., Zhang, J., Tian, H.: Near-infrared photochromic diarylethene iridium(III) complex. Org. Lett. 11(1), 161–164 (2009)

    Article  CAS  PubMed  Google Scholar 

  114. Li, X., Zhang, Q., Tu, Y., Ågren, H., Tian, H.: Modulation of iridium(III) phosphorescence via photochromic ligands: a density functional theory study. Phys. Chem. Chem. Phys. 12(41), 13730–13736 (2010)

    Article  CAS  PubMed  Google Scholar 

  115. Chan, J.C.H., Lam, W.H., Wong, H.L., Zhu, N., Wong, W.T., Yam, V.W.W.: Diarylethene-containing cyclometalated platinum(II) complexes: tunable photochromism via metal coordination and rational ligand design. J. Am. Chem. Soc. 133(32), 12690–12705 (2011)

    Article  CAS  PubMed  Google Scholar 

  116. Indelli, M.T., Carli, S., Ghirotti, M., Chiorboli, C., Ravaglia, M., Garavelli, M., Scandola, F.: Triplet pathwaysin diarylethene photochromism: photophysical and computational study of Dyads containing ruthenium(II) polypyridine and 1, 2-bis(2-methylbenzothiophene-3-yl) maleimide units. J. Am. Chem. Soc. 130(23), 7286–7299 (2008)

    Article  CAS  PubMed  Google Scholar 

  117. Roberts, M.N., Nagle, J.K., Finden, J.G., Branda, N.R., Wolf, M.O.: Linker dependent metal-sensitized photoswitching of dithienylethenes. Inorg. Chem. 48(1), 19–21 (2009)

    Article  CAS  PubMed  Google Scholar 

  118. Irie, M., Miyatake, O., Uchida, K.: Blocked photochromism of diarylethenes. J. Am. Chem. Soc. 114(22), 8715–8716 (1992)

    Article  CAS  Google Scholar 

  119. Irie, M., Miyatake, O., Uchida, K., Eriguchi, T.: Photochromic diarylethenes with intralocking arms. J. Am. Chem. Soc. 116(22), 9894–9900 (1994)

    Article  CAS  Google Scholar 

  120. Lemieux, V., Branda, N.R.: Reactivity-gated photochromism of 1,2-dithienylethenes for potential use in dosimetry applications. Org. Lett. 7(14), 2969–2972 (2005)

    Article  CAS  PubMed  Google Scholar 

  121. Poon, C.T., Lam, W.H., Yam, V.W.W.: Gated photochromism in triarylborane-containing dithieneylethenes: a new approach to a “lock-unlock” system. J. Am. Chem. Soc. 133(49), 19622–19625 (2011)

    Article  CAS  PubMed  Google Scholar 

  122. Poon, C.T., Lam, W.H., Wong, H.L., Yam, V.W.W.: Photochromic dithienylethene-containing triarylborane derivatives: facile approach to modulate photochromic properties with multi-addressable functions. Chem. Eur. J. 21(5), 2182–2192 (2015)

    Article  CAS  PubMed  Google Scholar 

  123. Park, J.S., Lifschitz, A.M., Young, R.M., Mendez-Arroyo, J., Wasiewski, M.R., Stern, C.L., Mirkin, C.A.: Modulation of electronics and thermal stabilities of photochromic phosphino-aminoazobenzene derivatives in weak-link approach coordination complexes. J. Am. Chem. Soc. 135(45), 16988–16996 (2013)

    Article  CAS  PubMed  Google Scholar 

  124. Wang, S., Li, X., Zhao, W., Chen, X., Zhang, J., Agren, H., Zou, Q., Zhu, L., Chen, W.: Cu2+-selectively gated photochromism in Schiff-modified diarylethenes with a star-shaped structure. J. Mater. Chem. C. 5(2), 282–289 (2017)

    Article  CAS  Google Scholar 

  125. Wu, Y., Zhu, W., Wan, W., Xie, Y., Tian, H., Li, A.D.Q.: Reversible photoswitching specifically responds to mercury(II) ions: the gated photochromism of bis(dithiazole)ethene. Chem. Commun. 50(91), 14205–14208 (2014)

    Article  CAS  Google Scholar 

  126. Chen, B.Z., Wang, M.Z., Wu, Y.Q., Tian, H.: Reversible near-infrared fluorescence switch by novel photochromic unsymmetrical-phthalocyanine hybrids based on bisthienylethene. Chem. Commun. 0(10), 1060–1061 (2002)

    Article  CAS  Google Scholar 

  127. Bahr, J.L., Kodis, G., De la Garze, L., Lin, S., Moore, A.L., Moore, T.A., Gust, D.: Photoswitched singlet energy transfer in a porphyrin-spiropyran dyad. J. Am. Chem. Soc. 123(29), 7124–7133 (2001)

    Article  CAS  PubMed  Google Scholar 

  128. Fernández-Acebes, A., Lehn, J.M.: Optical switching and fluorescence modulation in photochromic metal complexes. Adv. Mater. 10(18), 1519–1522 (1998)

    Article  Google Scholar 

  129. Fernández-Acebes, A., Lehn, J.M.: Optical switching and fluorescence modulation properties of photochromic metal complexes derived from dithienylethene ligands. Chem. Eur. J. 5(11), 3285–3292 (1999)

    Article  Google Scholar 

  130. Lees, A.J., Adamson, A.W.: Photophysics and photochemistry of pentacarbonyl(pyridine)tungsten(0) complexes which luminesce in fluid solution. J. Am. Chem. Soc. 104(14), 3804–3812 (1982)

    Article  CAS  Google Scholar 

  131. Norsten, T.B., Branda, N.R.: Axially coordinated porphyrinic photochromes for non-destructive information processing. Adv. Mater. 13(5), 347–349 (2001)

    Article  CAS  Google Scholar 

  132. He, X., Norel, L., Hervault, Y.M., Métivier, R., Aléo, A.D., Maury, O., Rigaut, S.: Modulation of Eu(III) and Yb(III) luminescence using a DTE photochromic ligand. Inorg. Chem. 55(24), 12635–12643 (2016)

    Article  CAS  PubMed  Google Scholar 

  133. Guerchais, V., Ordronneau, L., Bozec, H.L.: Recent developments in the field of metal complexes containing photochromic ligands: modulation of linear and nonlinear optical properties. Coord. Chem. Rev. 254(21–22), 2533–2545 (2010)

    Article  CAS  Google Scholar 

  134. Ordronneau, L., Nitadori, H., Ledoux, I., Singh, A., Williams, J.A.G., Akita, M., Guerchais, V., Bozec, H.L.: Photochromic metal complexes: photoregulation of both the nonlinear optical and luminescent properties. Inorg. Chem. 51(10), 5627–5636 (2012)

    Article  CAS  PubMed  Google Scholar 

  135. Aubert, V., Guerchais, V., Ishow, E., Hoang-Thi, K., Ledoux, I., Nakatani, K., Bozec, H.L.: Efficient photoswitching of the nonlinear optical properties of dipolar photochromic zinc(II) complexes. Angew. Chem. Int. Ed. 47(3), 577–580 (2008)

    Article  CAS  Google Scholar 

  136. Boixel, J., Guerchais, V., Bozec, H.L., Jacquemin, D., Amar, A., Boucekkine, A., Colombo, A., Dragonetti, C., Marinotto, D., Roberto, D., Righetto, S., Angelis, R.D.: Second-order NLO switches from molecules to polymer films based on photochromic cyclometalated platinum(II) complexes. J. Am. Chem. Soc. 136(14), 5367–5375 (2014)

    Article  CAS  PubMed  Google Scholar 

  137. Green, K.A., Cifuentes, M.P., Corkery, T.C., Samoc, M., Humphrey, M.G.: Switching the cubic nonlinear optical properties of an electro-, halo-, and photochromic ruthenium alkynyl complex across six states. Angew. Chem. Int. Ed. 48(42), 7867–7870 (2009)

    Article  CAS  Google Scholar 

  138. Sud, D., Norsten, T.B., Branda, N.R.: Photoswitching of stereoselectivity in catalysis using a copper dithienylethene complex. Angew. Chem. Int. Ed. 44(13), 2019–2021 (2005)

    Article  CAS  Google Scholar 

  139. Neilson, B.M., Bielawski, C.W.: Photoswitchable metal-mediated catalysis: remotely tuned alkene and alkyne hydroborations. Organometallics. 32(10), 3121–3128 (2013)

    Article  CAS  Google Scholar 

  140. Teator, A.J., Shao, H., Lu, G., Liu, P., Bielawski, C.W.: A photoswitchable olefin metathesis catalyst. Organometallics. 36(2), 490–497 (2017)

    Article  CAS  Google Scholar 

  141. Neilson, B.M., Bielawski, C.W.: Illuminating photoswitchable catalysis. ACS Catal. 3(8), 1874–1885 (2013)

    Article  CAS  Google Scholar 

  142. Xu, Z., Cao, Y., Patrick, B.O., Wolf, M.O.: Photoswitching of copper(I) chromophores with dithienylethene-based ligands. Chem. Eur. J. 24(8), 10315–10319 (2018)

    Article  CAS  PubMed  Google Scholar 

  143. Wei, S.C., Pan, M., Li, K., Wang, S., Zhang, J., Su, C.Y.: A multistimuli-responsive photochromic metal-organic gel. Adv. Mater. 26(13), 2072–2077 (2014)

    Article  CAS  PubMed  Google Scholar 

  144. Wei, S.C., Pan, M., Fan, Y.Z., Liu, H., Zhang, J., Su, C.Y.: Creating coordination-based cavities in a multiresponsive supramolecular gel. Chem. Eur. J. 21(20), 7418–7427 (2015)

    Article  CAS  PubMed  Google Scholar 

  145. Herder, M., Schmidt, B.M., Grubert, L., Pätzel, M., Schwarz, J., Hecht, S.: Improving the fatigue resistance of diarylethene switches. J. Am. Chem. Soc. 137(7), 2738–2747 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the City University of Hong Kong and the General Research Fund (Project No. CityU 11306217) from the Research Grants Council of Hong Kong SAR, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Chiu Ko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiao, Y., Ko, CC. (2022). Photochromic Reactions in Coordination Compounds. In: Bahnemann, D., Patrocinio, A.O.T. (eds) Springer Handbook of Inorganic Photochemistry. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-63713-2_21

Download citation

Publish with us

Policies and ethics