Skip to main content

Abstract

This chapter first summarizes the content of the book and discusses key results. Subsequently, a multitude of promising future branches of research is outlined. On the one hand, this concerns possible theoretical extensions of the model and the numerical studies. On the other hand, proper experiments are suggested for the validation of the numerical results. Thereby, the focus is on cubic minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This requires a solution for the problem with potential (3.44) at \(p>1\).

  2. 2.

    The comparison with dislocation cell forming metals and alloys is, of course, limited due to the differences between metallic and ionic bond and the resulting consequences.

  3. 3.

    The actual realization at low temperatures with optical accessibility of the sample poses a technical challenge.

References

  1. Gurtin, M.E.: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50(1), 5–32 (2002)

    Article  Google Scholar 

  2. Koster, M., Le, K.C.: Formation of grains and dislocation structure of geometrically necessary boundaries. Mater. Sci. Eng. A 643, 12–16 (2015)

    Article  CAS  Google Scholar 

  3. Koster, M., Le, K.C., Nguyen, B.D.: Formation of grain boundaries in ductile single crystals at finite plastic deformations. Int. J. Plast. 69, 134–151 (2015)

    Article  Google Scholar 

  4. Conti, S., Hackl, K. (eds.): Analysis and Computation of Microstructure in Finite Plasticity. Springer, Berlin (2015)

    Google Scholar 

  5. Ungár, T., Zehetbauer, M.: Stage IV work hardening in cell forming materials, part II: A new mechanism. Scripta Materialia 35(12), 1467–1473 (1996)

    Article  Google Scholar 

  6. Wang, D., Diehl, M., Roters, F., Raabe, D.: On the role of the collinear dislocation interaction in deformation patterning and laminate formation in single crystal plasticity. Mech. Mater. 125, 70–79 (2018)

    Article  Google Scholar 

  7. Yuan, F., Yan, D., Sun, J., Zhou, L., Zhu, Y., Wu, X.: Ductility by shear band delocalization in the nano-layer of gradient structure. Mater. Res. Lett. 7(1), 12–17 (2018)

    Article  Google Scholar 

  8. Shutov, A.V., Ihlemann, J.: Zur Simulation plastischer Umformvorgänge unter Berücksichtigung thermischer Effekte. Materialwissenschaft und Werkstofftechnik 42(7), 632–638 (2011)

    Article  Google Scholar 

  9. Bortoloni, L., Cermelli, P.: Dislocation Patterns and Work-Hardening in Crystalline Plasticity. J. Elast. 76(2), 113–138 (2004)

    Article  Google Scholar 

  10. Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Materialia 58(4), 1152–1211 (2010)

    Article  CAS  Google Scholar 

  11. Skrotzki, W., Suzuki, T.: Peierls stresses of ionic crystals with the NaCl-structure. Radiat. Effects 74(1–4), 315–322 (2006)

    Google Scholar 

  12. Skrotzki, W., Frommeyer, O., Haasen, P.: Plasticity of polycrystalline ionic solids. Physica Status Solidi Appl. Res. 66, 219–228 (1981)

    Article  CAS  Google Scholar 

  13. Haasen, P., Messerschmidt, U., Skrotzki, W.: Low energy dislocation structures in ionic crystals and semiconductors. Mater. Sci. Eng. 81, 493–507 (1986)

    Article  CAS  Google Scholar 

  14. Wang, X.G., Witz, J.F., El Bartali, A., Oudriss, A., Seghir, R., Dufrénoy, P., Feaugas, X., Charkaluk, E.: A dedicated DIC methodology for characterizing plastic deformation in single crystals. Exp. Mech. 56(7), 1155–1167 (2016)

    Article  Google Scholar 

  15. Mróz, Z., Oliferuk, W.: Energy balance and identification of hardening moduli in plastic deformation processes. Int. J. Plast. 18(3), 379–397 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian B. Silbermann .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silbermann, C.B., Baitsch, M., Ihlemann, J. (2021). Outlook. In: Introduction to Geometrically Nonlinear Continuum Dislocation Theory. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-63696-8_8

Download citation

Publish with us

Policies and ethics