Skip to main content

Monitoring of Dryland Vulnerability by Remote Sensing and Geoinformation Processing: Case of Wadi Bouhamed Watershed (Southern Tunisia)

  • Chapter
  • First Online:
Environmental Remote Sensing and GIS in Tunisia

Part of the book series: Springer Water ((SPWA))

  • 309 Accesses

Abstract

Land degradation (LD) has become a crucial issue with both environmental and socio‐economic implications. Natural forces, through periodic stresses of extreme and persistent weather events, and human use and abuse of vulnerable areas, jointly affect LD dynamics, creating negative feedbacks for the ecosystem equilibrium. Spatial assessment of environmental phenomena at regional scale involves the analysis and fusion of multiple, complex, multidisciplinary, and large‐scale information. It is thus important to develop cost effective methodologies to assess and monitor dryland conditions. Remote sensing data and geoprocessing are currently widely tested for this purpose as repeatable and spatial cost-effective ideal tool. Meanwhile, standardized techniques and operational procedures still need to be developed to evaluate land degradation and desertification in the arid areas of Mediterranean regions. Changes in surface properties can be detected through remote sensing data analysis. The main sources of information for the large scale monitoring of soils and vegetation is nowadays derived from satellite imaging. Several indices based on visible near-infrared (VNIR) and short-wave infrared (SWIR) reflectance spectrum are used to produce qualitative and quantitative studies of land degradation and desertification through biological, geophysical and chemical properties description. The general objective of this chapter is to present an overview of dryland degradation and to discuss geo-information and remote sensing data analysis as a support tool for the assessment and monitoring of dryland vulnerability in Southeastern Tunisia. Land Use Land Cover (LULC) changes in the Wadi Bouhamed catchment during 1988–2000 and 2000–2011 periods have been evaluated by soil and vegetation radiometric indices (Normalized Difference Vegetation Index-NDVI; Brightness Index-IB) using LANDSAT TM et ETM + images. Data highlighted that desertification is extending downstream the watershed with a sand movement phenomenon. This is mainly explained by long drought events observed since 1988 enhanced by human practices. Starting from the ’80, modification of agricultural activities intensification on the one hand and marginal land abandonment on the other had caused severe environmental impacts, including the increase in land degradation risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UNCCD (2013) A stronger UNCCD for a land-degradation neutral world. www.unccd.int

  2. Dregne HE, Kassas M, Rozanov AB (1991) New assessment of the world status of desertification. Desertification Control Bull 20:6–19

    Google Scholar 

  3. UNCED (1992) Managing fragile ecosystems, combating desertification and drought. United Nations Conference on Environment and Development

    Google Scholar 

  4. Reynolds JF, Stafford Smith M (2002) Global desertification: do humans create deserts? In: Stafford-Smith, Reynolds, MJF (eds) Do humans create deserts? Dahlem University Press, Berlin, pp. 1–22

    Google Scholar 

  5. Sivakumar MVK, Stefanski R (2007) Climate and land degradation—an overview. In: Sivakumar MVK, Ndiang’ui, N (eds) Climate and land degradation. Environmental science and engineering (environmental science). Springer, Berlin, Heidelberg

    Google Scholar 

  6. EDL (2014) A global initiative for sustainable land management. The Economics Of Land Degradation. http://www.eld-initiative.org

  7. EDL (2017) The costs of land degradation and benefits of sustainable land management in Africa. The Economics of Land Degradation. http://www.eld-initiative.org

  8. Van de Koppel J, Rietkerk M, Weissing FJ (1997) Catastrophic vegetation shifts and soil degradation in terrestrial grazing systems. Trends Ecol Evol 12:352–356

    Article  Google Scholar 

  9. Rietkerk M, Van de Koppel J (1997) Alternate stable states and threshold effects in semi-arid grazing systems. Oikos 79:69–76

    Article  Google Scholar 

  10. Mtimet A (2001) Soils of Tunisia. In: Zdruli P, Steduto P, Lacirignola C, Montanarella L (eds) Soil resources of Southern and Eastern Mediterranean countries. Bari: CIHEAM, Options Méditerranéennes: Série B. Etudes et Recherches 34:243–262

    Google Scholar 

  11. Hirche A, Salamani M, Boughani A, Belala F, Essafi B, Gashut EH, Hourizi R, Grandi M, Ain Hamouda T (2017) Land degradation and restoration: The North African experiences. Geophysical Research Abstracts 19, EGU2017-11898

    Google Scholar 

  12. ESA (2017) Monitoring and evaluation tools to assess land degradation and environmental conditions. http://eo4sd.esa.int/files/2017/04/agri_2.pdf

  13. Dewitte O, Jones A, Elbelrhiti H, Horion S, Montanarella L (2012) Remote sensing for soil mapping in Africa: an overview. Prog Phys GeographyProgress Phys Geogr 36:514–538

    Article  Google Scholar 

  14. UNCCD (1994) United Nations convention to Combat desertification: article 1. http://catalogue.unccd.int/936_UNCCD_Convention_ENG.pdf

  15. Starkel L (2005) Role of climatic and anthropogenic factors accelerating soil erosion and fluvial activity in Central Europe. Stud Quat 22:27–33

    Google Scholar 

  16. Marchetti M (2002) Environmental changes in the central Po Plain (northern Italy) due to fluvial modifications and anthropogenic activities. Geomorphology 44(3–4):361–373

    Article  Google Scholar 

  17. Edward JA, Guillaume B, Besset M, Goichot M, Dussouillez P, Nguyen VL (2015) Linking rapid erosion of the Mekong River delta to human activities. Scientific Reports, vol. 5, Article n°14745

    Google Scholar 

  18. Sowa AHO, IbeSr KM (1992) The interaction of human activities and geological processes: a geo-environmental study in Southeastern Nigeria (Owerri urban area). J Afr Earth Sci (and Middle East) 14(4):539–544

    Article  Google Scholar 

  19. Loczy D, Suto L (2011) Human activity and geomorphology. In: Gregory KJ, Goudie, AS (eds) The SAGE handbook of geomorphology. Sage, London, p 648

    Google Scholar 

  20. Blanco H, Lal R (2010) Water erosion. In: Principles of soil conservation and management. Springer, Berlin, p 256

    Google Scholar 

  21. Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen, London, p 265

    Google Scholar 

  22. Khatteli H (1995) Aeolian erosion in arid and Saharan Tunisia: analysis of processes and research of remediation ways. Ph-D. Gent-Belgique University, p 170 (French)

    Google Scholar 

  23. Leon L (1988) Basic Wind Erosion processes agriculture. Ecosystems and Environ 22(23):91–101

    Google Scholar 

  24. Breshears DD, Whicker JJ, Johansen MP, Pinder JE (2003) Wind and water erosion and transport in semi-arid shrubland, grassland and forest ecosystems: quantifying dominance of horizontal wind-driven transport. Earth Surf Proc Land 28:1189–1209

    Article  Google Scholar 

  25. Dregne HE (2002) Land degradation in drylands. Arid Land Resour. Manage 16:99–132

    Article  Google Scholar 

  26. Hill J, Schütt B (2000) Mapping complex patterns of erosion and stability in dry Mediterranean ecosystems. Remote Sens Environ 74:557–569

    Article  Google Scholar 

  27. Mainguet M, Dumay F (2006) Fighting against aeolian erosion: a way to fight against desertification: CSFD Thematic Folders. n°3. April 2006. CSFD/Agropolis, Montpellier, France, p 44 (French)

    Google Scholar 

  28. Subramanya K (2008) Engineering hydrology. Ed. Tata. McGraw-Hill, New Delhi

    Google Scholar 

  29. Bullock P (2005) Climate change impacts. In: Encyclopedia of soils in the environment, pp. 254–262

    Google Scholar 

  30. Roose E (1996) Land husbandry—components and strategy. FAO Soils Bulletin n°70

    Google Scholar 

  31. Gabriels D, Cornelis WM (2009) Human-induced land degradation. In: Land use, land cover and soil sciences: land use planning, vol 3. EOLSS Publications, p 290

    Google Scholar 

  32. Lal R, Blum WEH, Valentin C, Stewart BA (1997) Methods for assessment of land degradation. CRC Press, Boca Raton, 576 pp

    Google Scholar 

  33. Eswaran H, Lal R, Reich, PF (2001) Land degradation: an overview. In: Bridges EM, ID Hannam, LR Oldeman FWT Pening de Vries, SJ Scherr and S Sompatpanit (eds) Responses to land degradation. In: Proceeding 2nd International Conference on Land Degradation and Desertification, Khon Kaen, Thailand. Oxford Press, New Delhi, India

    Google Scholar 

  34. Escadafal R (1989) Characterization of arid soil surface with in situ observation and remote sensing: case of Tataouine region (Tunisia). Ph-D. Paris VI Univ., 317 pp (French)

    Google Scholar 

  35. Dubovyk O (2017) The role of Remote Sensing in land degradation assessments: opportunities and challenges. Eur J Remote Sens 50(1):601–613

    Article  Google Scholar 

  36. Godert WJ, Mantel S (2001) The role of GIS and remote sensing in land degradation assessment and conservation mapping: some user experiences and expectations. Int J Appl Earth Obs Geoinformation 3(1):61–68

    Article  Google Scholar 

  37. El Baroudy A (2011) Monitoring land degradation using remote sensing and GIS techniques in an area of the middle Nile Delta, Egypt. CATENA 87(2):201–208

    Article  Google Scholar 

  38. Fernandez C, Wu JQ, McCool DQ, Stockle CO (2003) Estimating water erosion and sediment yield with GIS, RUSLE and SEDD. J Soil Water Conserv 58(3):128–136

    Google Scholar 

  39. Gitas LZ, Douros K, Minakou C, Silleos GN, Karydas CG (2009) Multi-temporal soil erosion risk assessment in N. Chalkidiki, “using a modified USLE raster model”. EARSeL eProceedings 8:40–52

    Google Scholar 

  40. Ganasri BP, Ramesh H (2016) Assessment of soil erosion by RUSLE model using remote sensing and GIS: a case study of Nethravathi Basin. Geosci Front 7(6):953–961

    Article  Google Scholar 

  41. Panagos P, Borrelli P, Meusburger K (2015) A new European slope length and steepness factor (LS-factor) for modeling soil erosion by water. Geosci 5:117–126

    Article  Google Scholar 

  42. Dwivedi RS, Kumar AB, Tewari KN (1997) The utility of multi-sensor data for mapping eroded lands. Int J Remote Sens 18(11):2303–2318

    Article  Google Scholar 

  43. Bou Kheir R, Girard M., Shaban A, Khawlie M, Faour G, Darwich T (2000) Contribution of remote sensing for the modeling of water erosion of soils in the coastal region of Lebanon. Télédétection 2(2):79–90 (French)

    Google Scholar 

  44. Bachaoui B, Bachaoui EM, El Harti A, Bennari A, El Ghmari A (2007) Mapping of water erosion risk: case of the Moroccan High Atlas. Télédétection 7(4):393–404 (French)

    Google Scholar 

  45. Dengiz O, Yakupoglu T, Kaskan O (2009) Soil erosion assessment using geographical information system (GIS) and remote sensing (RS) study from Ankara-Guvenc Basin, Turkey. J Env Biol 30(3):339–344

    Google Scholar 

  46. Singh A (1989) Digital change detection techniques using remotely-sensed data. Int J Remote Sens 10:989–1003

    Article  Google Scholar 

  47. Coppin PR, Bauer ME (1996) Digital change detection in forest ecosystems with remote sensing imagery. Remote Sensing Reviews 13:207–234

    Article  Google Scholar 

  48. Kumar M, Singh RK (2013) Digital image processing of remotely sensed satellite images for information extraction. Conference on Advances in Communication and Control Systems 2013 (CAC2S 2013)

    Google Scholar 

  49. Dubois JM, Pham TH, Bonn F (2007) Methodological approach for detecting changes in a fragmented environment using medium spatial resolution images: application to a coastal region in Vietnam. Revue Télédétection 7(1):303–323 (French)

    Google Scholar 

  50. Richards J, Jia X (2006) Remote sensing digital image analysis. Springer, Berlin, Heidelberg

    Google Scholar 

  51. Lambin EF, Geist HJ, Lepers E (2003) Dynamics of land-use and land-cover change in tropical regions. Annales Review of Environmental Resources 28:205–241

    Article  Google Scholar 

  52. Jensen JR (2004) Introductory digital image processing —a remote sensing perspective. Prentice Hall, Upper Saddle River, NJ, 316 pp

    Google Scholar 

  53. Masoud A, Koike K (2006) Arid land salinization detected by remotely-sensed landcover changes: A case study in the Siwa region. NW Egypt J Arid Environments 66(1):151–167

    Article  Google Scholar 

  54. Chaieb M (1989) Influence of soil water content on some vegetal species in the tunisian arid zone. Ph-D. Univiserty of Sciences and Technologie. Languedoc, Montpellier, p 292 (French)

    Google Scholar 

  55. Di Bartolomeo A, Fakhoury T, Perrin D (2010) Consortium for applied research on international migration—migration Profi le Tunisia. European University Institute

    Google Scholar 

  56. Bonvallot J (1986) Tabias and jessour of South Tunisia. Agriculture in marge zones. Cahier de l’ORSTOM, série Pédologie XXII(2):163–171 (French)

    Google Scholar 

  57. Missaoui H (1996) Soil and water conservation in Tunisia. In: Pereira LS, Feddes RA, Gilley JR, Lesaffre B (eds) Sustainability of irrigated agriculture. NATO ASI Series (Series E: Applied Sciences), vol 312. Springer, Dordrecht

    Google Scholar 

  58. Ben Mechlia N, Oweis T, Masmoudi M, Khatteli H, Ouessar M, Sghaier N, Anane M, Sghaier M (2009) Assessment of supplemental irrigation and water harvesting potential: methodologies and case studies from Tunisia. ICARDA, Aleppo, Syria. iv + 36 pp

    Google Scholar 

  59. Peyras L, Royet P, Degoutte G (1991) Flow and energy dissipation in gabion stepped weirs. La Houille Blanche 1:37–47

    Article  Google Scholar 

  60. Floret C, Le Floch E, Pontanier R (1993) Agriculture and desertification in arid zones of Northern Africa. Agriculture in Mediterranean zone. Soils of the Mediterranean zone: uses, management and perspectives. Zaragoza: CIHEAM, Cahiers Options Méditerranéennes 1(2):39–51 (French)

    Google Scholar 

  61. Khatteli H (1993) Inventory and technical evaluation of fighting actions against silting in six governorates of South Tunisia. Revue des Régions Arides 5:59–90 (French)

    Google Scholar 

  62. Schowengerdt RA (2006) Remote sensing: models and methods for image processing. Elsevier Academic Press, Cambridge, p 560

    Google Scholar 

  63. Ouerchefani D, Dhaou H, Essifi B (2013) Application of atmospheric, radiometric and geometric correction on LANDSAT TM et ETM + images of SouthEastern Tunisia. Revue des Régions arides 32(3):89–110. P25 (French)

    Google Scholar 

  64. Escadafal R, Bacha S (1996) Strategy for the dynamic study of desertification. In: Escadafal R, Mulders MA, Thiombiano L (eds.) Proceeding of the International Symposium AISS, Ouagadougou, Burkina Faso, 6–10 February 1995. Monitoring of Soils using remote sensing and GIS, Editions ORSTOM. pp. 19–34 (French)

    Google Scholar 

  65. Cailleau D, Mougenot B (1996) Identification of soil degradation using remote sensing in the Sahel region of Niger. In: Escadafal R, Mulders MA, Thiombiano L (eds) Monitoring of Soils using remote sensing and GIS. Paris: ORSTOM, pp 169–179 (French)

    Google Scholar 

  66. Haboudane D, Bonn F, Royer A, Sommer S, Mehl W (2002) Land digital geomorphometic attributes. Int J Remote Sens 18:3795–3820

    Article  Google Scholar 

  67. Belghith A (1997) Spectroscopic, satellite and integrated study of the ecosystems degradation in arid conditions (pre-Saharan Tunisia)—Interest of optical and microwave data. Ph-D, Paris VII. 264 pp (French)

    Google Scholar 

  68. Bennari A, El-Harti A, Haboudane D, Bachaoui M, El-Ghmari A (2007) Integration of spectral and geomorphometric variables in a GIS for mapping areas exposed to erosion. Revue Télédétection 7:393–404 (French)

    Google Scholar 

  69. Chikhaoui M, Bonn F, Merzouk A, Lacaze B, Alami M, Mejjati AM (2007) Soil degradation mapping using aster data approaches. Revue Télédétection, 7(1–2–3–4):343–357 (French)

    Google Scholar 

  70. Maimouni S, Bennari A, El-Harti A, El-Ghmari A (2011) Potentials and limits of the spectral indices to characterize the degradation of soils in semi-arid environment. J Can Dent Assoc 37(3):285–301 (French)

    Google Scholar 

  71. Séguis L, Puech C (1997) Method for determining radiometric invariants suitable for the semi-arid landscape of West Africa. Int J Remote Sensing 18(2):255–271 (French)

    Google Scholar 

  72. Rouse JW, Hass RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the great plains with ERTS. Third ERTS symposium, NASA SP-351. 1:309–317

    Google Scholar 

  73. Hunter RE, Richmond BM, Alpha TR (1983) Storm-controlled oblique dunes of the Oregon coast. Bull the Geol. Soc. America 94(12):1450–1465

    Article  Google Scholar 

  74. Huete A, Post DF, Jackson RD (1984) Soil spectral effect on space vegetation discrimination. Remote Sens Environ 15:155–165

    Article  Google Scholar 

  75. Huete A, Jackson RD, Fost DF (1985) Spectral response of a plant canopy with different soil backgrounds. Remote Sens Environ 17:37–53

    Article  Google Scholar 

  76. Huete A, Jackson RD (1987) Suitability of spectral indices for evaluating vegetation characteristics on arid rangelands. Remote Sens Environ 23:213–232

    Article  Google Scholar 

  77. Qi J, Chehbouni A, Huete A, Kerr YH, Sorooshian S (1994) A modified soil adjusted vegetation index. Remote Sens Environ 48:119–126

    Article  Google Scholar 

  78. Qi J, Huete A (1995) A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geo. & Remote Sensing 33:457–465

    Article  Google Scholar 

  79. Pech RP, Davis AW, Lamacraft RR, Graetz RD (1986) Calibration of Landsat data for sparsely vegetated semi-arid rangelands. Int. J Remote Sensing 7:1729–1750

    Article  Google Scholar 

  80. Schmidt H, Karnieli A (2001) Sensitivity of vegetation indices to substrate brightness in hyper-arid environment: the Makhtesh Ramon Crater (Israel) case study. Int J Remote Sensing 22(17):3503–3520

    Article  Google Scholar 

  81. Lillesand PTM, Kiefer RW (2000) Remote sensing and image interpretation, 4th edn. Wiley, New York, p 724

    Google Scholar 

  82. Mougenot B, Cailleu D (1995) Identification of soil degradation using remote sensing in the Sahel region of Niger. Proceeding of the International Symposium AISS (working groups RS and DM), Ouagadougou, Burkina Faso, 6–10 February, pp 169–179 (French)

    Google Scholar 

  83. Escadafal R (2012) Long-term observation of arid environments by satellites: feedback and perspectives. In: Requier-Desjardins M, Ben Khatra N, Nedjraoui D, Wata Sama I, Sghaier M, Briki M (eds.). Environmental monitoring and development. Achievement and perspectives: Mediterranean, Sahara and Sahel Montpellier: CIHEAM/OSS-Options Méditerranéennes: Série B. Etudes et Recherches, 68:41–69 (French)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najiba Chkir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chkir, N., Ouerchefani, D. (2021). Monitoring of Dryland Vulnerability by Remote Sensing and Geoinformation Processing: Case of Wadi Bouhamed Watershed (Southern Tunisia). In: Khebour Allouche, F., Negm, A.M. (eds) Environmental Remote Sensing and GIS in Tunisia. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-63668-5_13

Download citation

Publish with us

Policies and ethics