Skip to main content

Litter Decomposition in Mediterranean Pine Forests Subjected to Climate Change

  • 453 Accesses

Part of the Managing Forest Ecosystems book series (MAFE,volume 38)

Abstract

Decomposition of dead organic matter is a fundamental process in the carbon cycle and is essential for the sustainment of biomass production in terrestrial ecosystems. Climatic factors are key drivers of decay of plant residues (litter), and, thus, changing those factors might affect litter decomposition. In this chapter, we assess the potential impact of climate change on litter decomposition in Mediterranean pine forests by direct climatic influences and by indirect impacts through changes in forest structure, composition and microclimate. We also present important insights from litter decomposition in Mediterranean pine forests that could be relevant to more mesic forests. Models project reductions in precipitation amounts for Mediterranean-type climate zones, and water deficits are expected to grow in all Mediterranean regions because of rising temperatures. These conditions can lead to decreased canopy densities, either by tree mortality and defoliation, or by adaptive management decisions. Decreased water availability reduces the rates of rain-based microbial degradation of plant litter, while increasing the openness of canopies, and thus enhancing abiotic decay by photochemical and thermal degradation, and microbial degradation driven by non-rainfall water sources (air humidity, dew, fog). We hypothesize that abiotic and humidity-enhanced biotic degradation compensates for the decrease in classic rain-driven microbial degradation in the hotter and drier, but not in the cooler and moister Mediterranean pine forests. The Mediterranean-type climate is projected to expand into more mesic regions, bringing abiotic and humidity-enhanced biotic mechanisms of decay into play in some of today’s temperate forests.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-63625-8_16
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-63625-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 16.1
Fig. 16.2

References

  • Acacio V, Dias FS, Catry FX et al (2017) Landscape dynamics in Mediterranean oak forests under global change: understanding the role of anthropogenic and environmental drivers across forest types. Glob Chang Biol 23:1199–1217

    PubMed  CrossRef  Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    CrossRef  Google Scholar 

  • Alessandri A, De Felice M, Zeng N et al (2014) Robust assessment of the expansion and retreat of Mediterranean climate in the 21st century. Sci Rep 4:7211

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Almagro M, Martínez-Mena M (2012) Exploring short-term leaf-litter decomposition dynamics in a Mediterranean ecosystem: dependence on litter type and site conditions. Plant Soil 358:323–335

    CAS  CrossRef  Google Scholar 

  • Araujo PI, Austin AT (2015) A shady business: pine afforestation alters the primary controls on litter decomposition along a precipitation gradient in Patagonia, Argentina. J Ecol 103:1408–1420

    CAS  CrossRef  Google Scholar 

  • Arianoutsou M, Radea C (2000) Litter production and decomposition in Pinus halepensis forests. In: Ne’eman G, Trabaud L (eds) Ecology, biogeography and management of Pinus halepensis and P. brutia forest ecosystems in the Mediterranean Basin. Backhuys Publishers, Leiden, pp 183–190

    Google Scholar 

  • Aupic-Samain A, Baldy V, Lecareux C et al (2019) Tree litter identity and predator density control prey and predator demographic parameters in a Mediterranean litter-based multi-trophic system. Pedobiologia 73:1–9

    CrossRef  Google Scholar 

  • Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558

    CAS  PubMed  CrossRef  Google Scholar 

  • Austin AT, Mendez MS, Ballaré CL (2016) Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems. Proc Natl Acad Sci U S A 113:4392–4397

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Baier W (1966) Studies on dew formation under semi-arid conditions. Agric Meteorol 3:103–112

    CrossRef  Google Scholar 

  • Baker NR, Allison SD (2015) Ultraviolet photodegradation facilitates microbial litter decomposition in a Mediterranean climate. Ecology 96:1994–2003

    PubMed  CrossRef  Google Scholar 

  • Barba J, Curiel Yuste J, Poyatos R et al (2016a) Strong resilience of soil respiration components to drought-induced die-off resulting in forest secondary succession. Oecologia 182:27–41

    PubMed  CrossRef  Google Scholar 

  • Barba J, Lloret F, Curiel Yuste J (2016b) Effects of drought-induced forest die-off on litter decomposition. Plant Soil 402:91–101

    CAS  CrossRef  Google Scholar 

  • Barnes PW, Throop HL, Hewins DB et al (2012) Soil coverage reduces photodegradation and promotes the development of soil-microbial films on dryland leaf litter. Ecosystems 15:311–321

    CAS  CrossRef  Google Scholar 

  • Barnes PW, Throop HL, Archer SR et al (2015) Sunlight and soil–litter mixing: drivers of litter decomposition in drylands. In: Lüttge U, Beyschlag W (eds) Progress in botany. Springer Nature, Cham, pp 273–302

    CrossRef  Google Scholar 

  • Berg B, Laskowski R (2005) Litter decomposition: a guide to carbon and nutrient turnover. Academic, New York

    Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter. In: Decomposition, humus formation, carbon sequestration, 2nd edn. Springer, Berlin

    Google Scholar 

  • Berg B, Davey MP, De Marco A et al (2010) Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry 100:57–73

    CAS  CrossRef  Google Scholar 

  • Blanco JA, Imbert JB, Castillo FJ (2011) Thinning affects Pinus sylvestris needle decomposition rates and chemistry differently depending on site conditions. Biogeochemistry 106:397–414

    CAS  CrossRef  Google Scholar 

  • Bravo-Oviedo A, Ruiz-Peinado R, Onrubia R et al (2017) Thinning alters the early-decomposition rate and nutrient immobilization-release pattern of foliar litter in Mediterranean oak-pine mixed stands. For Ecol Manag 391:309–320

    CrossRef  Google Scholar 

  • Brown S, Mo J, McPherson JK et al (1996) Decomposition of woody debris in Western Australian forests. Can J For Res 26:954–966

    CrossRef  Google Scholar 

  • Camarero JJ et al (this volume) Effects of global change on tree growth and vigor of Mediterranean pines. In: Ne’eman G, Osem Y (eds) Pines and their mixed forest ecosystems in the Mediterranean Basin. Springer, Cham

    Google Scholar 

  • Carnicer J, Coll M, Ninyerola M et al (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci U S A 108:1474–1478

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chomel M, Fernandez C, Bousquet-Mélou A et al (2014) Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones. J Ecol 102:411–424

    CrossRef  Google Scholar 

  • Cobb RC, Ruthrof K, Breshears DD et al (2017) Ecosystem dynamics and management after forest die-off: a global synthesis with conceptual state-and-transition models. Ecosphere 8:e02034

    CrossRef  Google Scholar 

  • Cortina J, Vallejo VR (1994) Effects of clearfelling on forest floor accumulation and litter decomposition in a radiata pine plantation. For Ecol Manag 70:299–310

    CrossRef  Google Scholar 

  • Delgado JD, Arroyo NL, Arévalo JR et al (2007) Edge effects of roads on temperature, light, canopy cover, and canopy height in laurel and pine forests (Tenerife, Canary Islands). Landsc Urban Plan 81:328–340

    CrossRef  Google Scholar 

  • Diffenbaugh NS, Pal JS, Giorgi F et al (2007) Heat stress intensification in the Mediterranean climate change hotspot. Geophys Res Lett 34:L11706

    CrossRef  Google Scholar 

  • Dirks I, Navon Y, Kanas D et al (2010) Atmospheric water vapor as driver of litter decomposition in Mediterranean shrubland and grassland during rainless seasons. Glob Chang Biol 16:2799–2812

    CrossRef  Google Scholar 

  • Dorman M, Svoray T, Perevolotsky A et al (2015) What determines tree mortality in dry environments? A multi-perspective approach. Ecol Appl 25:1054–1071

    PubMed  CrossRef  Google Scholar 

  • Evans S, Todd-Brown KEO, Jacobson K et al (2019) Non-rainfall moisture: a key driver of microbial respiration from standing litter in arid, semiarid, and mesic grasslands. Ecosystems. https://doi.org/10.1007/s10021-019-00461-y

  • Facelli JM, Pickett STA (1991) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–32

    CrossRef  Google Scholar 

  • Foereid B, Bellarby J, Meier-Augenstein W et al (2010) Does light exposure make plant litter more degradable? Plant Soil 333:275–285

    CAS  CrossRef  Google Scholar 

  • Gallo ME, Porras-Alfaro A, Odenbach KJ et al (2009) Photoacceleration of plant litter decomposition in an arid environment. Soil Biol Biochem 41:1433–1441

    CAS  CrossRef  Google Scholar 

  • Garcia-Pausas J, Casals P, Romanyà J (2004) Litter decomposition and faunal activity in Mediterranean forest soils: effects of N content and the moss layer. Soil Biol Biochem 36:989–997

    CAS  CrossRef  Google Scholar 

  • García-Plé C, Vanrell P, Monrey M (1995) Litter fall and decomposition in a Pinus halepensis forest on Mallorca. J Veg Sci 6:17–22

    CrossRef  Google Scholar 

  • Gavinet J, Vilagrosa A, Chirino E et al (2015) Hardwood seedling establishment below Aleppo pine depends on thinning intensity in two Mediterranean sites. Ann For Sci 72:999–1008

    CrossRef  Google Scholar 

  • Gavinet J, Prévosto B, Fernandez C et al (2016) Introducing resprouters to enhance Mediterranean forest resilience: importance of functional traits to select species according to a gradient of pine density. J Appl Ecol 53:1735–1745

    CAS  CrossRef  Google Scholar 

  • Gea-Izquierdo G, Viguera B, Cabrera M et al (2014) Drought induced decline could portend widespread pine mortality at the xeric ecotone in managed Mediterranean pine-oak woodlands. For Ecol Manag 320:70–82

    CrossRef  Google Scholar 

  • Gelfand I, Grünzweig JM, Yakir D (2012) Slowing of nitrogen cycling and increasing nitrogen use efficiency following afforestation of semi-arid shrubland. Oecologia 168:563–575

    CAS  PubMed  CrossRef  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63:90–104

    CrossRef  Google Scholar 

  • Glassman SI, Weihe C, Li J et al (2018) Decomposition responses to climate depend on microbial community composition. Proc Natl Acad Sci U S A 115(47):11994–11999

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gliksman D, Rey A, Seligmann R et al (2017) Biotic degradation at night, abiotic degradation at day: positive feedbacks on litter decomposition in drylands. Glob Chang Biol 23:1564–1574

    PubMed  CrossRef  Google Scholar 

  • Gliksman D, Haenel S, Grünzweig JM (2018a) Biotic and abiotic modifications of leaf litter during dry periods affect litter mass loss and nitrogen loss during wet periods. Funct Ecol 32:831–839

    CrossRef  Google Scholar 

  • Gliksman D, Haenel S, Osem Y et al (2018b) Litter decomposition in Mediterranean pine forests is enhanced by reduced canopy cover. Plant Soil 422:317–329

    CAS  CrossRef  Google Scholar 

  • Gómez-Aparicio L, García-Valdés R, Ruíz-Benito P et al (2011) Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: implications for forest management under global change. Glob Chang Biol 17:2400–2414

    CrossRef  Google Scholar 

  • Granados ME, Vilagrosa A, Chirino E et al (2016) Reforestation with resprouter species to increase diversity and resilience in Mediterranean pine forests. For Ecol Manag 362:231–240

    CrossRef  Google Scholar 

  • Grünzweig JM, Gelfand I, Fried Y et al (2007) Biogeochemical factors contributing to enhanced carbon storage following afforestation of a semi-arid shrubland. Biogeosciences 4:891–904

    CrossRef  Google Scholar 

  • Handa IT, Aerts R, Berendse F et al (2014) Consequences of biodiversity loss for litter decomposition across biomes. Nature 509:218–221

    CAS  PubMed  CrossRef  Google Scholar 

  • Hättenschwiler S, Coq S, Barantal S et al (2011) Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytol 189:950–965

    PubMed  CrossRef  Google Scholar 

  • Henry HAL, Brizgys K, Field CB (2008) Litter decomposition in a California annual grassland: interactions between photodegradation and litter layer thickness. Ecosystems 11:545–554

    CAS  CrossRef  Google Scholar 

  • Hewins DB, Archer SR, Okin GS et al (2013) Soil–litter mixing accelerates decomposition in a Chihuahuan Desert grassland. Ecosystems 16:183–195

    CAS  CrossRef  Google Scholar 

  • Huang J, Yu H, Guan X et al (2016) Accelerated dryland expansion under climate change. Nat Clim Chang 6:166–171

    CrossRef  Google Scholar 

  • Ibrahima A, Joffre R, Gillon D (1995) Changes in litter during the initial leaching phase – an experiment on the leaf-litter of Mediterranean species. Soil Biol Biochem 27:931–939

    CAS  CrossRef  Google Scholar 

  • Incerti G, Bonanomi G, Giannino F, Rutigliano FA, Piermatteo D, Castaldi S, De Marco A, Fierro A, Fioretto A, Maggi O, Papa S, Persiani AM, Feoli E, De Santo AV, Mazzoleni S (2011) Litter decomposition in Mediterranean ecosystems: modelling the controlling role of climatic conditions and litter quality. Appl Soil Ecol 49:148–157

    CrossRef  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • IPCC (2018) Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Masson-Delmotte V, Zhai P, Pörtner H-O et al (eds). World Meterological Organization, Geneva

    Google Scholar 

  • Jacobs AFG, van Pul WAJ, van Dijken A (1990) Similarity moisture dew profiles within a corn canopy. J Appl Meteorol 29:1300–1306

    CrossRef  Google Scholar 

  • Jacobson K, van Diepeningen A, Evans S et al (2015) Non-rainfall moisture activates fungal decomposition of surface litter in the Namib Sand Sea. PLoS One 10:e0126977

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Johnson-Maynard JL, Shouse PJ, Graham RC et al (2004) Microclimate and pedogenic implications in a 50-year-old chaparral and pine biosequence. Soil Sci Soc Am J 68:876

    CAS  CrossRef  Google Scholar 

  • Joly FX, Milcu A, Scherer-Lorenzen M et al (2017) Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytol 214:1281–1293

    CAS  PubMed  CrossRef  Google Scholar 

  • King JY, Brandt LA, Adair EC (2012) Shedding light on plant litter decomposition: advances, implications and new directions in understanding the role of photodegradation. Biogeochemistry 111:57–81

    CrossRef  Google Scholar 

  • Kurz-Besson C, Couteaux MM, Berg B et al (2006) A climate response function explaining most of the variation of the forest floor needle mass and the needle decomposition in pine forests across Europe. Plant Soil 285:97–114

    CAS  CrossRef  Google Scholar 

  • Lado-Monserrat L, Lidón A, Bautista I (2016) Litterfall, litter decomposition and associated nutrient fluxes in Pinus halepensis: influence of tree removal intensity in a Mediterranean forest. Eur J For Res 135:203–214

    CrossRef  Google Scholar 

  • Lee H, Rahn T, Throop HL (2012) An accounting of C-based trace gas release during abiotic plant litter degradation. Glob Chang Biol 18:1185–1195

    CrossRef  Google Scholar 

  • Lee H, Fitzgerald J, Hewins DB et al (2014) Soil moisture and soil-litter mixing effects on surface litter decomposition: a controlled environment assessment. Soil Biol Biochem 72:123–132

    CAS  CrossRef  Google Scholar 

  • Lin Y, Karlen SD, Ralph J et al (2018) Short-term facilitation of microbial litter decomposition by ultraviolet radiation. Sci Total Environ 615:838–848

    CAS  PubMed  CrossRef  Google Scholar 

  • Lionello P, Abrantes F, Congedi L et al (2012) Introduction: Mediterranean climate – background information. In: Lionello P (ed) The climate of the Mediterranean region. Elsevier, Oxford

    Google Scholar 

  • Llorens P, Domingo F (2007) Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. J Hydrol 335:37–54

    CrossRef  Google Scholar 

  • López-Moreno JI, Gascoin S, Herrero J et al (2017) Different sensitivities of snowpacks to warming in Mediterranean climate mountain areas. Environ Res Lett 12:074006

    CrossRef  CAS  Google Scholar 

  • Lucas-Borja ME, Candel-Pérez D, García Morote FA et al (2016) Pinus nigra Arn. ssp. salzmannii seedling recruitment is affected by stand basal area, shrub cover and climate interactions. Ann For Sci 73:649–656

    CrossRef  Google Scholar 

  • Mazza G, Agnelli AE, Cantiani P et al (2019) Short-term effects of thinning on soil CO2, N2O and CH4 fluxes in Mediterranean forest ecosystems. Sci Total Environ 651:713–724

    CAS  PubMed  CrossRef  Google Scholar 

  • McDowell NG, Allen CD (2015) Darcy’s law predicts widespread forest mortality under climate warming. Nat Clim Chang 5:669–672

    CrossRef  Google Scholar 

  • Moorhead DL, Callaghan T (1994) Effects of increasing ultraviolet B radiation on decomposition and soil organic matter dynamics: a synthesis and modelling study. Biol Fertil Soils 18:19–26

    CAS  CrossRef  Google Scholar 

  • Moro MJ, Domingo F (2000) Litter decomposition in four woody species in a Mediterranean climate: weight loss, N and P dynamics. Ann Bot 86:1065–1071

    CAS  CrossRef  Google Scholar 

  • Ne’eman G, Perevolotsky A (2000) The management of burned forests in Israel. In: Ne’eman G, Trabaud L (eds) Ecology, biogeography and management of Pinus halepensis and P. brutia forest ecosystems in the Mediterranean Basin. Backhuys Publishers, Leiden, pp 321–333

    Google Scholar 

  • Palmero-Iniesta M, Domènech R, Molina-Terrén D et al (2017) Fire behavior in Pinus halepensis thickets: effects of thinning and woody debris decomposition in two rainfall scenarios. For Ecol Manag 404:230–240

    CrossRef  Google Scholar 

  • Pan Y-X, Wang X-P, Zhang Y-F (2010) Dew formation characteristics in a revegetation-stabilized desert ecosystem in Shapotou area, Northern China. J Hydrol 387:265–272

    CrossRef  Google Scholar 

  • Pancotto VA, Sala OE, Cabello M et al (2003) Solar UV-B decreases decomposition in herbaceous plant litter in Tierra del Fuego, Argentina: potential role of an altered decomposer community. Glob Chang Biol 9:1465–1474

    CrossRef  Google Scholar 

  • Polade SD, Gershunov A, Cayan DR et al (2017) Precipitation in a warming world: assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci Rep 7:10783

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Preisler Y, Tatarinov F, Grünzweig JM et al (2019) Mortality versus survival in drought-affected Aleppo pine forest depends on the extent of rock cover and soil stoniness. Funct Ecol 33:901–912

    CrossRef  Google Scholar 

  • Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101:133–149

    CAS  CrossRef  Google Scholar 

  • Prévosto B, Monnier Y, Ripert C et al (2011) Can we use shelterwoods in Mediterranean pine forests to promote oak seedling development? For Ecol Manag 262:1426–1433

    CrossRef  Google Scholar 

  • Prévosto B, Helluy M, Gavinet J et al (2020) Microclimate in Mediterranean pine forests: what is the influence of the shrub layer? Agric For Meteorol 282–283:107856

    CrossRef  Google Scholar 

  • Qasemian L, Guiral D, Farnet AM (2014) How do microlocal environmental variations affect microbial activities of a Pinus halepensis litter in a Mediterranean coastal area? Sci Total Environ 496:198–205

    CAS  PubMed  CrossRef  Google Scholar 

  • Qubaja R, Grünzweig JM, Rotenberg E et al (2020) Evidence for large carbon sink and long residence time in semi-arid forests based on 15-year flux and inventory records. Glob Chang Biol. https://doi.org/10.1111/gcb.14927

  • Rascher KG, Große-Stoltenberg A, Máguas C et al (2011) Understory invasion by Acacia longifolia alters the water balance and carbon gain of a Mediterranean pine forest. Ecosystems 14:904–919

    CrossRef  Google Scholar 

  • Rasmussen C, Southard RJ, Horwath WR (2008) Litter type and soil minerals control temperate forest soil carbon response to climate change. Glob Chang Biol 14:2064–2080

    CrossRef  Google Scholar 

  • Raz Yaseef N, Rotenberg E, Yakir D (2010) Effects of spatial variations in soil evaporation caused by tree shading on water flux partitioning in a semi-arid pine forest. Agric For Meteorol 150:454–462

    CrossRef  Google Scholar 

  • Riahi K, Rao S, Krey V et al (2011) RCP 8.5 – a scenario of comparatively high greenhouse gas emissions. Clim Chang 109:33–57

    CAS  CrossRef  Google Scholar 

  • Rodríguez-García E, Bravo F, Spies TA (2011) Effects of overstorey canopy, plant–plant interactions and soil properties on Mediterranean maritime pine seedling dynamics. For Ecol Manag 262:244–251

    CrossRef  Google Scholar 

  • Rovira P, Vallejo VR (1997) Organic carbon and nitrogen mineralization under Mediterranean climatic conditions: the effects of incubation depth. Soil Biol Biochem 29:1509–1520

    CAS  CrossRef  Google Scholar 

  • Ruiz-Benito P, Lines ER, Gomez-Aparicio L et al (2013) Patterns and drivers of tree mortality in Iberian forests: climatic effects are modified by competition. PLoS One 8:e56843

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sagi N, Grünzweig JM, Hawlena D (2019) Burrowing detritivores regulate nutrient cycling in a desert ecosystem. Proc R Soc B 286:20191647

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Santonja M, Baldy V, Fernandez C et al (2015) Potential shift in plant communities with climate change: outcome on litter decomposition and nutrient release in a Mediterranean oak forest. Ecosystems 18:1253–1268

    CAS  CrossRef  Google Scholar 

  • Schlesinger WH, Bernhardt ES (2013) Biogeochemistry. An analysis of global change, 3rd edn. Academic, New York

    Google Scholar 

  • Segura C, Fernández-Ondoño E, Jiménez MN et al (2019) Carbon and nutrient contents in the miscellaneous fraction of litterfall under different thinning intensities in a semiarid Pinus halepensis afforestation. IFOREST 12:375–382

    CrossRef  Google Scholar 

  • Sheffer E, Canham CD, Kigel J et al (2015) Countervailing effects on pine and oak leaf litter decomposition in human-altered Mediterranean ecosystems. Oecologia 177:1039–1051

    PubMed  CrossRef  Google Scholar 

  • Sherwood S, Fu Q (2014) A drier future? Science 343:737–739

    CAS  PubMed  CrossRef  Google Scholar 

  • Smith WK, Gao W, Steltzer H et al (2010) Moisture availability influences the effect of ultraviolet-B radiation on leaf litter decomposition. Glob Chang Biol 16:484–495

    CrossRef  Google Scholar 

  • Springett JA (1976) The effect of planting Pinus pinaster Ait. on populations of soil microarthropods and on litter decomposition at Gnangara, Western Australia. Austral Ecol 1:83–87

    CrossRef  Google Scholar 

  • Tague CL, Moritz MA (2019) Plant accessible water storage capacity and tree-scale root interactions determine how forest density reductions alter forest water use and productivity. Front For Glob Chang 2:36

    CrossRef  Google Scholar 

  • Tsiafouli MA, Monokrousos N, Sgardelis SP (2018) Drought in spring increases microbial carbon loss through respiration in a Mediterranean pine forest. Soil Biol Biochem 119:59–62

    CAS  CrossRef  Google Scholar 

  • Wang J, Liu L, Wang X et al (2015) The interaction between abiotic photodegradation and microbial decomposition under ultraviolet radiation. Glob Chang Biol 21:2095–2104

    PubMed  CrossRef  Google Scholar 

  • Wang J, Liu L, Wang X et al (2017) High nighttime humidity and dissolved organic carbon content support rapid decomposition of standing litter in a semi-arid landscape. Funct Ecol 31:1659–1668

    CrossRef  Google Scholar 

  • Whitford WG (2020) Ecology of desert systems, 2nd edn. Academic, London

    Google Scholar 

  • Wilkinson SC, Anderson JM, Scardelis SP et al (2002) PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress. Soil Biol Biochem 34:189–200

    CAS  CrossRef  Google Scholar 

  • Xiao H, Meissner R, Seeger J et al (2009) Effect of vegetation type and growth stage on dewfall, determined with high precision weighing lysimeters at a site in northern Germany. J Hydrol 377:43–49

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Grünzweig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Grünzweig, J.M., Gliksman, D. (2021). Litter Decomposition in Mediterranean Pine Forests Subjected to Climate Change. In: Ne'eman, G., Osem, Y. (eds) Pines and Their Mixed Forest Ecosystems in the Mediterranean Basin. Managing Forest Ecosystems, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-63625-8_16

Download citation