Skip to main content

Waves of Finite Amplitude

  • Chapter
  • First Online:
Introduction to Simple Shock Waves in Air

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 457 Accesses

Abstract

In our brief discussion of sound waves in Chap. 1 we assumed that the wave amplitude is sufficiently small that the resulting equations are linear. As a result, it was relatively easy to solve the equations which led to travelling waves whose distribution of density, pressure, velocity etc. moved with constant velocity c0 and the profile of the wave did not change with time. This, however, is not the case when the wave has appreciable amplitude and we will see, in due course, that the wave profile changes its shape as it propagates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The approximation will improve if the spacing between the initial set of data points is reduced.

References

  1. W. Band, Introduction to Mathematical Physics (Van Nostrand Company, Inc., Princeton, New Jersey, 1959)

    MATH  Google Scholar 

  2. S. Temkin, Elements of Acoustics, (John Wiley & Sons, New York, 1981), Section 3.7

    Google Scholar 

  3. J.D. Anderson, Modern Compressible Flow with Historical Perspective, 3rd edn. (McGraw-Hill, New York, 2003) Chapter 7

    Google Scholar 

  4. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, London, 1966), p. 366

    Google Scholar 

  5. N. Curle, H.J. Davies, Modern Fluid Dynamics, vol 2 (Van Nostrand Reinhold Company, London, 1971), p. 68

    MATH  Google Scholar 

  6. O. V. Rudenko, S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics, (Consultants Bureau, New York, A Division of Plenum Publishing Company, 1977), Chapter 1

    Google Scholar 

  7. D. Mihalas, B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics (Dover Publications, Inc., New York, 1999), p. 227

    MATH  Google Scholar 

  8. W. Band, G.E. Duvall, Physical nature of shock propagation. Am. J. Physiol. 29, 780–785 (1961)

    Article  ADS  Google Scholar 

  9. W.C. Griffith, W. Bleakney, Shock waves in gases. Am. J. Physiol. 22, 597 (1954)

    Article  ADS  Google Scholar 

  10. N. Curle, H.J. Davies, Modern Fluid Dynamics, vol 2 (Van Nostrand Reinhold Company, London, 1971) Section 3.3.2

    MATH  Google Scholar 

  11. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, London, 1966) Chapter 9

    Google Scholar 

  12. H.W. Liepmann, A. Roshko, Elements of Gasdynamics (Dover Publications Inc., Mineola, New York, 1956) Section 3.9

    MATH  Google Scholar 

  13. G.B. Whitham, Linear and Nonlinear Waves (John Wiley & Sons, Inc., New York, 1999)

    Book  Google Scholar 

  14. R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves (Interscience Publishers, Inc., New York, 1956)

    MATH  Google Scholar 

  15. A.R. Paterson, A First Course in Fluid Dynamics (Cambridge University Press, London, 1983) Chapter 14

    Book  Google Scholar 

  16. J.D. Logan, Applied Mathematics, 2nd edn. (Wiley & Sons, Inc., New York, 1977) Chapter 6

    MATH  Google Scholar 

  17. A.J. Chorin, J.E. Marsden, A Mathematical Introduction to Fluid Mechanics (Springer-Verlag, New York, 1979) Chapter 3

    Book  Google Scholar 

  18. F. H. Harlow, LA-2412 Report (Los Alamos Scientific Laboratory of the University of California, Los Alamos, New Mexico, November 1960), Chapter 3

    Google Scholar 

  19. M. A. Saad, Compressible Fluid Flow, (Prentice-Hall, Inc., Englewood Cliffs, New Jersey 1985), Chapter 9

    Google Scholar 

  20. J. Billingham, A.C. King, Wave Motion (Cambridge University Press, New York, 2000) Chapter 7

    MATH  Google Scholar 

  21. O. Regev, O.M. Umurhan, P.A. Yecko, Modern Fluid Dynamics for Physics and Astrophysics (Springer, New York, 2016) Chapter 6

    Google Scholar 

  22. J.H.S. Lee, The Gas Dynamics of Explosions (Cambridge University Press, New York, 2016) Chapter 1

    Book  Google Scholar 

  23. W.A. Strauss, Partial Differential Equations: An Introduction (John Wiley & Sons, Inc., New York, 1992) Chapter 14

    MATH  Google Scholar 

  24. P.J. Olver, Introduction to Partial Differential Equations (Springer, 2014)

    Google Scholar 

  25. S. Salsa, Partial Differential Equations in Action: From Modelling to Theory (Springer, Milan, Italy, 2008) Chapter 4

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prunty, S. (2021). Waves of Finite Amplitude. In: Introduction to Simple Shock Waves in Air. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-030-63606-7_2

Download citation

Publish with us

Policies and ethics