Skip to main content

Sparse Covariance and Precision Random Design Regression

  • Conference paper
  • First Online:
Recent Developments in Mathematical, Statistical and Computational Sciences (AMMCS 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 343))

  • 906 Accesses

Abstract

Linear regression for high dimensional data is an inherently challenging problem with many solutions generally involving some structural assumption on the model such as lasso’s sparsity in the parameter vector. Considering the random design setting, we apply a different sparsity assumption: sparsity in the covariance or precision matrix of the predictors. Thus, we propose a new regression estimator by first applying methods for estimating a sparse covariance or precision matrix. This matrix is then incorporated into the estimator for the regression parameters. We mainly compare this methodology against the classic ridge or Tikhonov regularization method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The estimator \({X}^\mathrm {T}Y\) occurs in practice in orthogonal experimental designs when X is chosen such that \({X}^\mathrm {T}X=I_p\) assuming \(p<n\). [19].

References

  1. Bickel, P.J., Levina, E.: Covariance regularization by thresholding. The Ann. Stat. 2577–2604 (2008)

    Google Scholar 

  2. Bien, J., Tibshirani, R.J.: Sparse estimation of a covariance matrix. Biometrika 98(4), 807–820 (2011)

    Article  MathSciNet  Google Scholar 

  3. Breiman, L., Freedman, D.: How many variables should be entered in a regression equation? J. Am. Stat. Assoc. 78(381), 131–136 (1983)

    Article  MathSciNet  Google Scholar 

  4. Bühlmann, P., Van De Geer, S.: Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer Science & Business Media (2011)

    Google Scholar 

  5. Cai, T., Liu, W.: Adaptive thresholding for sparse covariance matrix estimation. J. Am. Stat. Assoc. 106(494), 672–684 (2011)

    Article  MathSciNet  Google Scholar 

  6. Cai, T., Liu, W., Luo, X.: A constrained l1 minimization approach to sparse precision matrix estimation. J. Am. Stat. Assoc. 106(494), 594–607 (2011)

    Article  Google Scholar 

  7. Cortez, P., Morais, A.D.J.R.: A data mining approach to predict forest fires using meteorological data (2007)

    Google Scholar 

  8. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)

    Article  Google Scholar 

  9. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1 (2010)

    Article  Google Scholar 

  10. Hsu, D., Kakade, S.M., Zhang, T.: Random design analysis of ridge regression. In: Conference on Learning Theory, pp. 9–1 (2012)

    Google Scholar 

  11. Jankova, J., Van De Geer, S.: Confidence intervals for high-dimensional inverse covariance estimation. Electron. J. Stat. 9(1), 1205–1229 (2015)

    Article  MathSciNet  Google Scholar 

  12. Kashlak, A.B.: Non-asymptotic error controlled sparse high dimensional precision matrix estimation. J. Multi. Anal. 181, 104690 (2021)

    Google Scholar 

  13. Kashlak, A.B.: sparseMatEst: sparse matrix estimation and inference (2019b). https://CRAN.R-project.org/package=sparseMatEst. R package version 1.0.0

  14. Kashlak, A.B., Kong, L.: Nonasymptotic support recovery for high dimensional sparse covariance matrices. Stat. e316 (2020)

    Google Scholar 

  15. Redmond, M., Baveja, A.: A data-driven software tool for enabling cooperative information sharing among police departments. Eur. J. Oper. Res. 141(3), 660–678 (2002)

    Article  Google Scholar 

  16. Rothman, A.J.: Positive definite estimators of large covariance matrices. Biometrika 99(3), 733–740 (2012)

    Article  MathSciNet  Google Scholar 

  17. Rothman, A.J., Levina, E., Zhu, J.: Generalized thresholding of large covariance matrices. J. Am. Stat. Assoc. 104(485), 177–186 (2009)

    Article  MathSciNet  Google Scholar 

  18. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.: Series B (Methodological) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Wu, C.J., Hamada, M.S.: Experiments: Planning, Analysis, and Optimization, vol. 552. Wiley (2011)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Xu (Sunny) Wang from Wilfrid Laurier University and Dr. Yan Yuan from the University of Alberta for organizing the special session on Interdisciplinary Data Analysis of High-Dimensional Multimodal Data at AMMCS 2019 where this work was presented. We would also like to thank the comments of the anonymous reviewers who helped improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam B. Kashlak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, X., Winter, S., Kashlak, A.B. (2021). Sparse Covariance and Precision Random Design Regression. In: Kilgour, D.M., Kunze, H., Makarov, R., Melnik, R., Wang, X. (eds) Recent Developments in Mathematical, Statistical and Computational Sciences. AMMCS 2019. Springer Proceedings in Mathematics & Statistics, vol 343. Springer, Cham. https://doi.org/10.1007/978-3-030-63591-6_14

Download citation

Publish with us

Policies and ethics