Advertisement

Darwinian Medicine: We Evolved to Require Continuing Contact with the Microbiota of the Natural Environment. Evolution Turns the Inevitable into a Necessity

Chapter
  • 113 Downloads
Part of the Advances in Environmental Microbiology book series (AEM, volume 8)

Abstract

The immune system requires data inputs, especially in early life. A lack of these inputs contributes to increases in immunoregulatory disorders such as those in which the immune system attacks inappropriate targets (harmless allergens, self-components, or gut contents) or fails to switch off unnecessary background inflammation (resulting in chronically raised biomarkers of inflammation, and cardiovascular, metabolic, and psychiatric disorders). We can use an evolutionary approach to identify inputs that the immune systems of evolving humans inevitably received, because these are the inputs on which we may be in a state of “evolved dependence”. The maternal microbiota is clearly one major source of data for the developing immune system, and we now understand that caesarean deliveries, lack of breastfeeding, unvaried diets, and misuse of antibiotics are distorting mother-to-child transmission of the microbiota. However, the main focus of this essay is the crucial role of inputs from the natural environment, which have received much less attention despite the fact that epidemiology reveals strong health benefits of contact with nature. These inputs from nature, received via the airways, gut, and skin, provide crucial signals that set up immunoregulatory circuits. The natural environment also provides other inputs including epitopes to guide retention and expansion of useful lymphocyte clones, information about the microbiota of the environment into which the individual is born, signals that drive background activation of the innate immune system, spores of gut-adapted strains that can replace those lost because of antibiotics or poor diet, bacteriophages that modulate the microbiota, and DNA via horizontal gene transfer that increases metabolic flexibility of the gut microbiota. By analysing these microbial inputs and their mechanisms of action, while also identifying the lifestyle changes that are disrupting them, we can expect to discover novel prophylactic and therapeutic strategies.

References

  1. Aaby P, Benn CS (2020) Stopping live vaccines after disease eradication may increase mortality. Vaccine 38(1):10–14.  https://doi.org/10.1016/j.vaccine.2019.10.034CrossRefPubMedGoogle Scholar
  2. Abraham W, Monsanto Technology LLC (2010) Glyphosate formulations and their use for the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase. United States Patent. https://www.google.com/patents/US7771736
  3. Alves-Rosa F, Vulcano M, Beigier-Bompadre M, Fernández G, Palermo M, Isturiz MA (2002) Interleukin-1beta induces in vivo tolerance to lipopolysaccharide in mice. Clin Exp Immunol 128(2):221–228.  https://doi.org/10.1046/j.1365-2249.2002.01828.xCrossRefPubMedPubMedCentralGoogle Scholar
  4. Andersson MA, Mikkola R, Kroppenstedt RM, Rainey FA, Peltola J, Helin J, Sivonen K, Salkinoja-Salonen MS (1998) The mitochondrial toxin produced by Streptomyces griseus strains isolated from an indoor environment is valinomycin. Appl Environ Microbiol 64(12):4767–4773CrossRefGoogle Scholar
  5. Anstadt EJ, Fujiwara M, Wasko N, Nichols F, Clark RB (2016) TLR tolerance as a treatment for central nervous system autoimmunity. J Immunol 197(6):2110.  https://doi.org/10.4049/jimmunol.1600876CrossRefPubMedGoogle Scholar
  6. Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad Sci USA 115(25):6506.  https://doi.org/10.1073/pnas.1711842115CrossRefPubMedGoogle Scholar
  7. Batinovic S, Wassef F, Knowler SA, Rice DTF, Stanton CR, Rose J, Tucci J, Nittami T, Vinh A, Drummond GR, Sobey CG, Chan HT, Seviour RJ, Petrovski S, Franks AE (2019) Bacteriophages in natural and artificial environments. Pathogens 8(3):100.  https://doi.org/10.3390/pathogens8030100CrossRefPubMedCentralGoogle Scholar
  8. Benitez-Cabello A, Bautista-Gallego J, Garrido-Fernandez A, Rantsiou K, Cocolin L, Jimenez-Diaz R, Arroyo-Lopez FN (2016) RT-PCR-DGGE analysis to elucidate the dominant bacterial species of industrial spanish-style green table olive fermentations. Front Microbiol 7:1291.  https://doi.org/10.3389/fmicb.2016.01291CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bessede A, Gargaro M, Pallotta MT, Matino D, Servillo G, Brunacci C, Bicciato S, Mazza EM, Macchiarulo A, Vacca C, Iannitti R, Tissi L, Volpi C, Belladonna ML, Orabona C, Bianchi R, Lanz TV, Platten M, Della Fazia MA, Piobbico D, Zelante T, Funakoshi H, Nakamura T, Gilot D, Denison MS, Guillemin GJ, DuHadaway JB, Prendergast GC, Metz R, Geffard M, Boon L, Pirro M, Iorio A, Veyret B, Romani L, Grohmann U, Fallarino F, Puccetti P (2014) Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511(7508):184–190.  https://doi.org/10.1038/nature13323CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bilbo SD, Wray GA, Perkins SE, Parker W (2011) Reconstitution of the human biome as the most reasonable solution for epidemics of allergic and autoimmune diseases. Med Hypotheses 77(4):494–504.  https://doi.org/10.1016/j.mehy.2011.06.019CrossRefPubMedGoogle Scholar
  11. Black FL (1966) Measles endemicity in insular populations: critical community size and its evolutionary implication. J Theor Biol 11(2):207–211. 0022-5193(66)90161-5 [pii]CrossRefGoogle Scholar
  12. Blackley CH (1873) Experimental researches on the causes and nature of catarrhus aestivus (hay-fever and hay-asthma). Baillière Tindall and Cox, LondonGoogle Scholar
  13. Bloomfield SF, Rook GA, Scott EA, Shanahan F, Stanwell-Smith R, Turner P (2016) Time to abandon the hygiene hypothesis: new perspectives on allergic disease, the human microbiome, infectious disease prevention and the role of targeted hygiene. Perspect Public Health 136(4):213–224.  https://doi.org/10.1177/1757913916650225CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bobel TS, Hackl SB, Langgartner D, Jarczok MN, Rohleder N, Rook GA, Lowry CA, Gundel H, Waller C, Reber SO (2018) Less immune activation following social stress in rural vs. urban participants raised with regular or no animal contact, respectively. Proc Natl Acad Sci U S A 115(20):5259–5264.  https://doi.org/10.1073/pnas.1719866115CrossRefPubMedPubMedCentralGoogle Scholar
  15. Breidt F, McFeeters RF, Perez-Diaz I, Lee CW (2013) Fermented vegetables. In: Doyle MP, Buchanan RL (eds) Food microbiology: fundamentals and frontiers, 4 edn. ASM, Washington.  https://doi.org/10.1128/9781555818463.ch33
  16. Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, Goulding D, Lawley TD (2016) Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533(7604):543–546.  https://doi.org/10.1038/nature17645CrossRefPubMedPubMedCentralGoogle Scholar
  17. Buret AG, Motta J-P, Allain T, Ferraz J, Wallace JL (2019) Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: a role for iron? J Biomed Sci 26(1):1.  https://doi.org/10.1186/s12929-018-0495-4CrossRefPubMedPubMedCentralGoogle Scholar
  18. Burrows SM, Elbert W, Lawrence MG, Poeschl U (2009) Bacteria in the global atmosphere—part 1: review and synthesis of literature data for different ecosystems. Atmos Chem Phys 9:9263–9280.  https://doi.org/10.5194/acp-9-9263-2009
  19. Camilli G, Tabouret G, Quintin J (2018) The complexity of fungal β-glucan in health and disease: effects on the mononuclear phagocyte system. Front Immunol 9:673CrossRefGoogle Scholar
  20. Caspani G, Swann J (2019) Small talk: microbial metabolites involved in the signaling from microbiota to brain. Curr Opin Pharmacol 48:99–106.  https://doi.org/10.1016/j.coph.2019.08.001CrossRefPubMedGoogle Scholar
  21. Casula G, Cutting SM (2002) Bacillus probiotics: spore germination in the gastrointestinal tract. Appl Environ Microbiol 68(5):2344–2352CrossRefGoogle Scholar
  22. Catanzaro JR, Strauss JD, Bielecka A, Porto AF, Lobo FM, Urban A, Schofield WB, Palm NW (2019) IgA-deficient humans exhibit gut microbiota dysbiosis despite secretion of compensatory IgM. Sci Rep 9(1):13574–13574.  https://doi.org/10.1038/s41598-019-49923-2CrossRefPubMedPubMedCentralGoogle Scholar
  23. Cavalieri D, Rizzetto L, Tocci N, Rivero D, Asquini E, Si-Ammour A, Bonechi E, Ballerini C, Viola R (2016) Plant microRNAs as novel immunomodulatory agents. Sci Rep 6:25761.  https://doi.org/10.1038/srep25761CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cekanaviciute E, Probstel AK, Thomann A, Runia TF, Casaccia P, Katz Sand I, Crabtree E, Singh S, Morrissey J, Barba P, Gomez R, Knight R, Mazmanian S, Graves J, Cree BAC, Zamvil SS, Baranzini SE (2018) Multiple sclerosis-associated changes in the composition and immune functions of spore-forming bacteria. mSystems 3(6).  https://doi.org/10.1128/mSystems.00083-18
  25. Charabati M, Donkers SJ, Kirkland MC, Osborne LC (2020) A critical analysis of helminth immunotherapy in multiple sclerosis. Mult Scler.  https://doi.org/10.1177/1352458519899040
  26. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O’Toole PW (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178–184.  https://doi.org/10.1038/nature11319CrossRefPubMedGoogle Scholar
  27. Clark JD (2001) Kalambo falls prehistoric site. The earlier cultures: middle and earlier stone age, vol 3. Cambridge University Press, LondonGoogle Scholar
  28. Correale J, Farez MF (2011) The impact of parasite infections on the course of multiple sclerosis. J Neuroimmunol 233(1-2):6–11.  https://doi.org/10.1016/j.jneuroim.2011.01.002CrossRefPubMedGoogle Scholar
  29. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K (2019) The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol 16(8):461–478.  https://doi.org/10.1038/s41575-019-0157-3CrossRefPubMedGoogle Scholar
  30. Davenport ER, Sanders JG, Song SJ, Amato KR, Clark AG, Knight R (2017) The human microbiome in evolution. BMC Biol 15(1):127.  https://doi.org/10.1186/s12915-017-0454-7CrossRefPubMedPubMedCentralGoogle Scholar
  31. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563.  https://doi.org/10.1038/nature12820CrossRefPubMedGoogle Scholar
  32. de Castro J-AA, Guno MJV-R, Perez MO (2019) Bacillus clausii as adjunctive treatment for acute community-acquired diarrhea among Filipino children: a large-scale, multicenter, open-label study (CODDLE). Trop Dis Travel Med Vaccines 5:14–14.  https://doi.org/10.1186/s40794-019-0089-5CrossRefPubMedPubMedCentralGoogle Scholar
  33. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107(33):14691–14696.  https://doi.org/10.1073/pnas.1005963107CrossRefPubMedPubMedCentralGoogle Scholar
  34. Degroote S, Hunting DJ, Baccarelli AA, Takser L (2016) Maternal gut and fetal brain connection: Increased anxiety and reduced social interactions in Wistar rat offspring following peri-conceptional antibiotic exposure. Prog Neuropsychopharmacol Biol Psychiatry 71:76–82.  https://doi.org/10.1016/j.pnpbp.2016.06.010CrossRefPubMedPubMedCentralGoogle Scholar
  35. de Keijzer C, Basagaña X, Tonne C, Valentín A, Alonso J, Antó JM, Nieuwenhuijsen MJ, Kivimäki M, Singh-Manoux A, Sunyer J, Dadvand P (2019) Long-term exposure to greenspace and metabolic syndrome: A Whitehall II study. Environ Pollut 255:113231.  https://doi.org/10.1016/j.envpol.2019.113231
  36. de Mazancourt C, Johnson E, Barraclough TG (2008) Biodiversity inhibits species’ evolutionary responses to changing environments. Ecol Lett 11(4):380–388.  https://doi.org/10.1111/j.1461-0248.2008.01152.xCrossRefPubMedGoogle Scholar
  37. Derrien M, Johan ET, Vlieg H (2015) Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol 23(6):354–366CrossRefGoogle Scholar
  38. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108(7):3047–3052.  https://doi.org/10.1073/pnas.1010529108CrossRefPubMedGoogle Scholar
  39. Domazet-Loso T, Tautz D (2008) An ancient evolutionary origin of genes associated with human genetic diseases. Mol Biol Evol 25(12):2699–2707.  https://doi.org/10.1093/molbev/msn214CrossRefPubMedPubMedCentralGoogle Scholar
  40. Donaldson GP, Ladinsky MS, Yu KB, Sanders JG, Yoo BB, Chou WC, Conner ME, Earl AM, Knight R, Bjorkman PJ, Mazmanian SK (2018) Gut microbiota utilize immunoglobulin A for mucosal colonization. Science (New York, NY) 360(6390):795–800.  https://doi.org/10.1126/science.aaq0926CrossRefGoogle Scholar
  41. Dong Z, Xiong L, Zhang W, Gibson PG, Wang T, Lu Y, Wang G, Li H, Wang F (2016) Holding the inflammatory system in check: TLRs and their targeted therapy in asthma. Mediators Inflamm 2016:8.  https://doi.org/10.1155/2016/2180417CrossRefGoogle Scholar
  42. Duan Y, Llorente C, Lang S, Brandl K, Chu H, Jiang L, White RC, Clarke TH, Nguyen K, Torralba M, Shao Y, Liu J, Hernandez-Morales A, Lessor L, Rahman IR, Miyamoto Y, Ly M, Gao B, Sun W, Kiesel R, Hutmacher F, Lee S, Ventura-Cots M, Bosques-Padilla F, Verna EC, Abraldes JG, Brown RS, Vargas V, Altamirano J, Caballería J, Shawcross DL, Ho SB, Louvet A, Lucey MR, Mathurin P, Garcia-Tsao G, Bataller R, Tu XM, Eckmann L, van der Donk WA, Young R, Lawley TD, Stärkel P, Pride D, Fouts DE, Schnabl B (2019) Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature.  https://doi.org/10.1038/s41586-019-1742-x
  43. Dydensborg Sander S, Nybo Andersen A-M, Murray JA, Karlstad Ø, Husby S, Størdal K (2019) Association between antibiotics in the first year of life and celiac disease. Gastroenterology 156(8):2217–2229.  https://doi.org/10.1053/j.gastro.2019.02.039CrossRefPubMedGoogle Scholar
  44. Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson WO, Braun-Fahrlander C, Heederik D, Piarroux R, von Mutius E (2011) Exposure to environmental microorganisms and childhood asthma. N Engl J Med 364(8):701–709.  https://doi.org/10.1056/NEJMoa1007302CrossRefPubMedGoogle Scholar
  45. Elbert W, Taylor PE, Andreae MO, Pöschl U (2007) Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos Chem Phys 7(17):4569–4588.  https://doi.org/10.5194/acp-7-4569-2007CrossRefGoogle Scholar
  46. Elieh Ali Komi D, Sharma L, Dela Cruz CS (2018) Chitin and its effects on inflammatory and immune responses. Clin Rev Allergy Immunol 54(2):213–223.  https://doi.org/10.1007/s12016-017-8600-0CrossRefPubMedGoogle Scholar
  47. Engemann K, Pedersen CB, Arge L, Tsirogiannis C, Mortensen PB, Svenning JC (2019) Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proc Natl Acad Sci U S A 116(11):5188–5193.  https://doi.org/10.1073/pnas.1807504116CrossRefPubMedPubMedCentralGoogle Scholar
  48. Fink G, D’Acremont V, Leslie HH, Cohen J (2019) Antibiotic exposure among children younger than 5 years in low-income and middle-income countries: a cross-sectional study of nationally representative facility-based and household-based surveys. Lancet Infect Dis.  https://doi.org/10.1016/S1473-3099(19)30572-9
  49. Flandroy L, Poutahidis T, Berg G, Clarke G, Dao MC, Decaestecker E, Furman E, Haahtela T, Massart S, Plovier H, Sanz Y, Rook G (2018) The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci Total Environ 627:1018–1038.  https://doi.org/10.1016/j.scitotenv.2018.01.288CrossRefPubMedGoogle Scholar
  50. Fleming J, Hernandez G, Hartman L, Maksimovic J, Nace S, Lawler B, Risa T, Cook T, Agni R, Reichelderfer M, Luzzio C, Rolak L, Field A, Fabry Z (2019) Safety and efficacy of helminth treatment in relapsing-remitting multiple sclerosis: Results of the HINT 2 clinical trial. Mult Scler 25(1):81–91.  https://doi.org/10.1177/1352458517736377CrossRefPubMedGoogle Scholar
  51. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G (2012) The shared antibiotic resistome of soil bacteria and human pathogens. Science 337(6098):1107–1111.  https://doi.org/10.1126/science.1220761CrossRefPubMedPubMedCentralGoogle Scholar
  52. Fujimura KE, Johnson CC, Ownby DR, Cox MJ, Brodie EL, Havstad SL, Zoratti EM, Woodcroft KJ, Bobbitt KR, Wegienka G, Boushey HA, Lynch SV (2010) Man’s best friend? The effect of pet ownership on house dust microbial communities. J Allergy Clin Immunol 126 (2):410–412, 412.e411–413.  https://doi.org/10.1016/j.jaci.2010.05.042
  53. Geissler PW, Mwaniki DL, Thiong’o F, Friis H (1997) Geophagy among school children in Western Kenya. Trop Med Int Health 2(7):624–630.  https://doi.org/10.1046/j.1365-3156.1997.d01-345.xCrossRefPubMedGoogle Scholar
  54. Gusareva ES, Acerbi E, Lau KJX, Luhung I, Premkrishnan BNV, Kolundžija S, Purbojati RW, Wong A, Houghton JNI, Miller D, Gaultier NE, Heinle CE, Clare ME, Vettath VK, Kee C, Lim SBY, Chénard C, Phung WJ, Kushwaha KK, Nee AP, Putra A, Panicker D, Yanqing K, Hwee YZ, Lohar SR, Kuwata M, Kim HL, Yang L, Uchida A, Drautz-Moses DI, Junqueira ACM, Schuster SC (2019) Microbial communities in the tropical air ecosystem follow a precise diel cycle. Proc Natl Acad Sci USA 116(46):23299.  https://doi.org/10.1073/pnas.1908493116CrossRefPubMedGoogle Scholar
  55. Hallmann C, Sorg S, Jongejans E, Siepel H, Hofland N, Schwan H, Stenmans W, Müller A, Sumser H, Hörren T, Goulson D, de Kroon H (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12 (10):e0185809.  https://doi.org/10.1371/journal.pone.0185809
  56. Hannula SE, Zhu F, Heinen R, Bezemer TM (2019) Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat Commun 10(1):1254.  https://doi.org/10.1038/s41467-019-09284-wCrossRefPubMedPubMedCentralGoogle Scholar
  57. Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Makela MJ, Vartiainen E, Kosunen TU, Alenius H, Haahtela T (2012) Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci U S A 109(21):8334–8339.  https://doi.org/10.1073/pnas.1205624109CrossRefPubMedPubMedCentralGoogle Scholar
  58. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464(7290):908–912.  https://doi.org/10.1038/nature08937. nature08937 [pii]CrossRefPubMedGoogle Scholar
  59. Hesselmar B, Hicke-Roberts A, Lundell AC, Adlerberth I, Rudin A, Saalman R, Wennergren G, Wold AE (2018) Pet-keeping in early life reduces the risk of allergy in a dose-dependent fashion. PLoS One 13(12):e0208472.  https://doi.org/10.1371/journal.pone.0208472CrossRefPubMedPubMedCentralGoogle Scholar
  60. Hiemstra PS, Amatngalim GD, van der Does AM, Taube C (2016) Antimicrobial peptides and innate lung defenses: role in infectious and noninfectious lung diseases and therapeutic applications. Chest 149(2):545–551.  https://doi.org/10.1378/chest.15-1353CrossRefPubMedGoogle Scholar
  61. Hiramatsu Y, Satho T, Hyakutake M, Irie K, Mishima K, Miake F, Kashige N (2014) The anti-inflammatory effects of a high-frequency oligodeoxynucleotide from the genomic DNA of Lactobacillus casei. Int Immunopharmacol 23(1):139–147.  https://doi.org/10.1016/j.intimp.2014.08.013CrossRefPubMedGoogle Scholar
  62. Hong HA, Khaneja R, Tam NM, Cazzato A, Tan S, Urdaci M, Brisson A, Gasbarrini A, Barnes I, Cutting SM (2009a) Bacillus subtilis isolated from the human gastrointestinal tract. Res Microbiol 160(2):134–143.  https://doi.org/10.1016/j.resmic.2008.11.002CrossRefPubMedGoogle Scholar
  63. Hong HA, To E, Fakhry S, Baccigalupi L, Ricca E, Cutting SM (2009b) Defining the natural habitat of Bacillus spore-formers. Res Microbiol 160(6):375–379.  https://doi.org/10.1016/j.resmic.2009.06.006CrossRefPubMedGoogle Scholar
  64. Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, Takano Y, Uematsu K, Ikuta T, Ito M, Matsui Y, Miyazaki M, Murata K, Saito Y, Sakai S, Song C, Tasumi E, Yamanaka Y, Yamaguchi T, Kamagata Y, Tamaki H, Takai K (2020) Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577(7791):519–525.  https://doi.org/10.1038/s41586-019-1916-6CrossRefPubMedPubMedCentralGoogle Scholar
  65. Iyer LM, Aravind L, Coon SL, Klein DC, Koonin EV (2004) Evolution of cell-cell signaling in animals: did late horizontal gene transfer from bacteria have a role? Trends Genet 20(7):292–299.  https://doi.org/10.1016/j.tig.2004.05.007CrossRefPubMedGoogle Scholar
  66. Jeon KW (1972) Development of cellular dependence on infective organisms: micrurgical studies in amoebas. Science 176(4039):1122–1123.  https://doi.org/10.1126/science.176.4039.1122CrossRefPubMedGoogle Scholar
  67. Jia L, Lu J, Zhou Y, Tao Y, Xu H, Zheng W, Zhao J, Liang G, Xu L (2018) Tolerogenic dendritic cells induced the enrichment of CD4+Foxp3+ regulatory T cells via TGF-β in mesenteric lymph nodes of murine LPS-induced tolerance model. Clin Immunol 197:118–129.  https://doi.org/10.1016/j.clim.2018.09.010CrossRefPubMedGoogle Scholar
  68. Jin Y, Wu S, Zeng Z, Fu Z (2017) Effects of environmental pollutants on gut microbiota. Environ Pollut 222:1–9.  https://doi.org/10.1016/j.envpol.2016.11.045CrossRefPubMedGoogle Scholar
  69. Joung YS, Ge Z, Buie CR (2017) Bioaerosol generation by raindrops on soil. Nat Commun 8:14668.  https://doi.org/10.1038/ncomms14668CrossRefPubMedPubMedCentralGoogle Scholar
  70. Kelly JR, Borre Y, OB C, Patterson E, El Aidy S, Deane J, Kennedy PJ, Beers S, Scott K, Moloney G, Hoban AE, Scott L, Fitzgerald P, Ross P, Stanton C, Clarke G, Cryan JF, Dinan TG (2016) Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res 82:109–118.  https://doi.org/10.1016/j.jpsychires.2016.07.019CrossRefPubMedGoogle Scholar
  71. Kemppainen KM, Vehik K, Lynch KF, Larsson HE, Canepa RJ, Simell V, Koletzko S, Liu E, Simell OG, Toppari J, Ziegler AG, Rewers MJ, Lernmark Å, Hagopian WA, She J-X, Akolkar B, Schatz DA, Atkinson MA, Blaser MJ, Krischer JP, Hyöty H, Agardh D, Triplett EW, for The Environmental Determinants of Diabetes in the Young Study Group (2017) Association between early-life antibiotic use and the risk of islet or celiac disease autoimmunity. JAMA Pediatr 171(12):1217–1225.  https://doi.org/10.1001/jamapediatrics.2017.2905CrossRefPubMedPubMedCentralGoogle Scholar
  72. Kirjavainen PV, Karvonen AM, Adams RI, Taubel M, Roponen M, Tuoresmaki P, Loss G, Jayaprakash B, Depner M, Ege MJ, Renz H, Pfefferle PI, Schaub B, Lauener R, Hyvarinen A, Knight R, Heederik DJJ, von Mutius E, Pekkanen J (2019) Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat Med 25(7):1089–1095.  https://doi.org/10.1038/s41591-019-0469-4CrossRefPubMedGoogle Scholar
  73. Köhler-Forsberg O, Petersen L, Gasse C, Mortensen PB, Dalsgaard S, Yolken RH, Mors O, Benros ME (2019) A nationwide study in Denmark of the association between treated infections and the subsequent risk of treated mental disorders in children and adolescents. JAMA Psychiatry 76(3):271–279.  https://doi.org/10.1001/jamapsychiatry.2018.3428CrossRefPubMedGoogle Scholar
  74. Korem T, Zeevi D, Suez J, Weinberger A, Avnit-Sagi T, Pompan-Lotan M, Matot E, Jona G, Harmelin A, Cohen N, Sirota-Madi A, Thaiss CA, Pevsner-Fischer M, Sorek R, Xavier RJ, Elinav E, Segal E (2015) Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science 349(6252):1101–1106.  https://doi.org/10.1126/science.aac4812CrossRefPubMedPubMedCentralGoogle Scholar
  75. Krieg AM, Wu T, Weeratna R, Efler SM, Love-Homan L, Yang L, Yi AK, Short D, Davis HL (1998) Sequence motifs in adenoviral DNA block immune activation by stimulatory CpG motifs. Proc Natl Acad Sci U S A 95(21):12631–12636.  https://doi.org/10.1073/pnas.95.21.12631CrossRefPubMedPubMedCentralGoogle Scholar
  76. Krishnamani R, Mahaney WC (2000) Geophagy among primates: adaptive significance and ecological consequences. Anim Behav 59(5):899–915.  https://doi.org/10.1006/anbe.1999.1376CrossRefPubMedGoogle Scholar
  77. Leff JW, Fierer N (2013) Bacterial communities associated with the surfaces of fresh fruits and vegetables. PLoS One 8(3):e59310.  https://doi.org/10.1371/journal.pone.0059310CrossRefPubMedPubMedCentralGoogle Scholar
  78. Leroy F, Geyzen A, Janssens M, De Vuyst L, Scholliers P (2013) Meat fermentation at the crossroads of innovation and tradition: A historical outlook. Trends Food Sci Technol 31:130–137.  https://doi.org/10.1016/j.tifs.2013.03.008CrossRefGoogle Scholar
  79. Liddicoat C, Sydnor H, Cando-Dumancela C, Dresken R, Liu J, Gellie NJC, Mills JG, Young JM, Weyrich LS, Hutchinson MR, Weinstein P, Breed MF (2020) Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci Total Environ 701:134684.  https://doi.org/10.1016/j.scitotenv.2019.134684CrossRefPubMedGoogle Scholar
  80. Liu L, Chen X, Skogerbø G, Zhang P, Chen R, He S, Huang D-W (2012) The human microbiome: A hot spot of microbial horizontal gene transfer. Genomics 100(5):265–270.  https://doi.org/10.1016/j.ygeno.2012.07.012CrossRefPubMedGoogle Scholar
  81. Liu RT, Walsh RFL, Sheehan AE (2019) Prebiotics and probiotics for depression and anxiety: A systematic review and meta-analysis of controlled clinical trials. Neurosci Biobehav Rev 102:13–23.  https://doi.org/10.1016/j.neubiorev.2019.03.023CrossRefPubMedPubMedCentralGoogle Scholar
  82. Lori M, Symnaczik S, Mäder P, De Deyn G, Gattinger A (2017) Organic farming enhances soil microbial abundance and activity—a meta-analysis and meta-regression. PLoS One 12 (7):e0180442-e0180442. doi: https://doi.org/10.1371/journal.pone.0180442
  83. Loschko J, Schreiber HA, Rieke GJ, Esterhazy D, Meredith MM, Pedicord VA, Yao KH, Caballero S, Pamer EG, Mucida D, Nussenzweig MC (2016) Absence of MHC class II on cDCs results in microbial-dependent intestinal inflammation. J Exp Med 213(4):517–534.  https://doi.org/10.1084/jem.20160062CrossRefPubMedPubMedCentralGoogle Scholar
  84. Lu MF, Xiao ZT, Zhang HY (2013) Where do health benefits of flavonoids come from? Insights from flavonoid targets and their evolutionary history. Biochem Biophys Res Commun 434(4):701–704.  https://doi.org/10.1016/j.bbrc.2013.04.035CrossRefPubMedGoogle Scholar
  85. Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375(24):2369–2379.  https://doi.org/10.1056/NEJMra1600266CrossRefPubMedGoogle Scholar
  86. Maas J, Verheij RA, de Vries S, Spreeuwenberg P, Schellevis FG, Groenewegen PP (2009) Morbidity is related to a green living environment. J Epidemiol Community Health 63(12):967–973.  https://doi.org/10.1136/jech.2008.079038CrossRefPubMedGoogle Scholar
  87. Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K (2014) Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci 34(46):15490–15496.  https://doi.org/10.1523/JNEUROSCI.3299-14.2014CrossRefPubMedPubMedCentralGoogle Scholar
  88. Mazhary Z, Allahyari Fard N, Minuchehr Z, Javanshir N (2020) Package of anti-allergic probiotic Lactobacillus by focusing on the regulatory role of immunosuppressive motifs in allergy. Inform Med Unlocked 18:100280.  https://doi.org/10.1016/j.imu.2019.100280CrossRefGoogle Scholar
  89. McGovern PE (2009) Uncorking the past: the quest for wine, beer, and other alcoholic beverages. University of California Press, BerkeleyCrossRefGoogle Scholar
  90. McGovern PE, Zhang J, Tang J, Zhang Z, Hall GR, Moreau RA, Nunez A, Butrym ED, Richards MP, Wang CS, Cheng G, Zhao Z, Wang C (2004) Fermented beverages of pre- and proto-historic China. Proc Natl Acad Sci U S A 101(51):17593–17598.  https://doi.org/10.1073/pnas.0407921102CrossRefPubMedPubMedCentralGoogle Scholar
  91. Mikulic J, Longet S, Favre L, Benyacoub J, Corthesy B (2017) Secretory IgA in complex with Lactobacillus rhamnosus potentiates mucosal dendritic cell-mediated Treg cell differentiation via TLR regulatory proteins, RALDH2 and secretion of IL-10 and TGF-β. Cell Mol Immunol 14(6):546–556.  https://doi.org/10.1038/cmi.2015.110CrossRefPubMedGoogle Scholar
  92. Mitchell R, Popham F (2008) Effect of exposure to natural environment on health inequalities: an observational population study. Lancet 372(9650):1655–1660.  https://doi.org/10.1016/S0140-6736(08)61689-XCrossRefPubMedGoogle Scholar
  93. Mohammadi-Bardbori A, Bengtsson J, Rannug U, Rannug A, Wincent E (2012) Quercetin, resveratrol, and curcumin are indirect activators of the aryl hydrocarbon receptor (AHR). Chem Res Toxicol 25(9):1878–1884.  https://doi.org/10.1021/tx300169eCrossRefPubMedGoogle Scholar
  94. Möhle L, Mattei D, Heimesaat MM, Bereswill S, Fischer A, Alutis M, French T, Hambardzumyan D, Matzinger P, Dunay IR, Wolf SA (2016) Ly6C(hi) Monocytes Provide a Link between Antibiotic-Induced Changes in Gut Microbiota and Adult Hippocampal Neurogenesis. Cell Rep 15(9):1945–1956.  https://doi.org/10.1016/j.celrep.2016.04.074CrossRefPubMedGoogle Scholar
  95. Moore MN (2015) Do airborne biogenic chemicals interact with the PI3K/Akt/mTOR cell signalling pathway to benefit human health and wellbeing in rural and coastal environments? Environ Res 140:65–75.  https://doi.org/10.1016/j.envres.2015.03.015CrossRefPubMedGoogle Scholar
  96. Moura-Alves P, Faé K, Houthuys E, Dorhoi A, Kreuchwig A, Furkert J, Barison N, Diehl A, Munder A, Constant P, Skrahina T, Guhlich-Bornhof U, Klemm M, Koehler A-B, Bandermann S, Goosmann C, Mollenkopf H-J, Hurwitz R, Brinkmann V, Fillatreau S, Daffe M, Tümmler B, Kolbe M, Oschkinat H, Krause G, Kaufmann SHE (2014) AhR sensing of bacterial pigments regulates antibacterial defence. Nature 512(7515):387–392.  https://doi.org/10.1038/nature13684CrossRefPubMedGoogle Scholar
  97. Nakashima K, Kimura S, Ogawa Y, Watanabe S, Soma S, Kaneko T, Yamada L, Sawada H, Tung CH, Lu TM, Yu JK, Villar-Briones A, Kikuchi S, Satoh N (2018) Chitin-based barrier immunity and its loss predated mucus-colonization by indigenous gut microbiota. Nat Commun 9(1):3402.  https://doi.org/10.1038/s41467-018-05884-0CrossRefPubMedPubMedCentralGoogle Scholar
  98. Narushima S, Sugiura Y, Oshima K, Atarashi K, Hattori M, Suematsu M, Honda K (2014) Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbes 5(3):333–339.  https://doi.org/10.4161/gmic.28572CrossRefPubMedPubMedCentralGoogle Scholar
  99. Nehme B, Gilbert Y, Letourneau V, Forster RJ, Veillette M, Villemur R, Duchaine C (2009) Culture-independent characterization of archaeal biodiversity in swine confinement building bioaerosols. Appl Environ Microbiol 75(17):5445–5450.  https://doi.org/10.1128/AEM.00726-09CrossRefPubMedPubMedCentralGoogle Scholar
  100. Netea MG, Joosten LAB, Latz E, Mills KHG, Natoli G, Stunnenberg HG, O’Neill LAJ, Xavier RJ (2016) Trained immunity: A program of innate immune memory in health and disease. Science 352(6284):aaf1098.  https://doi.org/10.1126/science.aaf1098CrossRefPubMedPubMedCentralGoogle Scholar
  101. Ngure FM, Humphrey JH, Mbuya MN, Majo F, Mutasa K, Govha M, Mazarura E, Chasekwa B, Prendergast AJ, Curtis V, Boor KJ, Stoltzfus RJ (2013) Formative research on hygiene behaviors and geophagy among infants and young children and implications of exposure to fecal bacteria. Am J Trop Med Hyg 89(4):709–716.  https://doi.org/10.4269/ajtmh.12-0568CrossRefPubMedPubMedCentralGoogle Scholar
  102. Nicholson WL (2002) Roles of Bacillus endospores in the environment. Cell Mol Life Sci 59(3):410–416CrossRefGoogle Scholar
  103. Nishikimi M, Yagi K (1991) Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis. Am J Clin Nutr 54(6):1203S–1208S.  https://doi.org/10.1093/ajcn/54.6.1203sCrossRefPubMedGoogle Scholar
  104. Nocera AL, Mueller SK, Stephan JR, Hing L, Seifert P, Han X, Lin DT, Amiji MM, Libermann T, Bleier BS (2019) Exosome swarms eliminate airway pathogens and provide passive epithelial immunoprotection through nitric oxide. J Allergy Clin Immunol 143(4):1525–1535. e1521.  https://doi.org/10.1016/j.jaci.2018.08.046CrossRefPubMedGoogle Scholar
  105. Ott SJ, Waetzig GH, Rehman A, Moltzau-Anderson J, Bharti R, Grasis JA, Cassidy L, Tholey A, Fickenscher H, Seegert D, Rosenstiel P, Schreiber S (2017) Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 152(4):799–811.e797.  https://doi.org/10.1053/j.gastro.2016.11.010
  106. Pancer Z, Cooper MD (2006) The evolution of adaptive immunity. Annu Rev Immunol 24:497–518.  https://doi.org/10.1146/annurev.immunol.24.021605.090542CrossRefPubMedGoogle Scholar
  107. Parks J, McCandless L, Dharma C, Brook J, Turvey SE, Mandhane P, Becker AB, Kozyrskyj AL, Azad MB, Moraes TJ, Lefebvre DL, Sears MR, Subbarao P, Scott J, Takaro TK (2020) Association of use of cleaning products with respiratory health in a Canadian birth cohort. Can Med Assoc J 192(7):E154.  https://doi.org/10.1503/cmaj.190819CrossRefGoogle Scholar
  108. Parvez S, Gerona RR, Proctor C, Friesen M, Ashby JL, Reiter JL, Lui Z, Winchester PD (2018) Glyphosate exposure in pregnancy and shortened gestational length: a prospective Indiana birth cohort study. Environ Health 17(1):23.  https://doi.org/10.1186/s12940-018-0367-0CrossRefPubMedPubMedCentralGoogle Scholar
  109. Petersen C, Bell R, Klag KA, Lee S-H, Soto R, Ghazaryan A, Buhrke K, Ekiz HA, Ost KS, Boudina S, O’Connell RM, Cox JE, Villanueva CJ, Stephens WZ, Round JL (2019) T cell-mediated regulation of the microbiota protects against obesity. Science 365(6451):eaat9351.  https://doi.org/10.1126/science.aat9351CrossRefPubMedPubMedCentralGoogle Scholar
  110. Piewngam P, Zheng Y, Nguyen TH, Dickey SW, Joo H-S, Villaruz AE, Glose KA, Fisher EL, Hunt RL, Li B, Chiou J, Pharkjaksu S, Khongthong S, Cheung GYC, Kiratisin P, Otto M (2018) Pathogen elimination by probiotic Bacillus via signalling interference. Nature 562(7728):532–537.  https://doi.org/10.1038/s41586-018-0616-yCrossRefPubMedPubMedCentralGoogle Scholar
  111. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF, Bettelli E, Caccamo M, Oukka M, Weiner HL (2008) Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453(7191):65–71.  https://doi.org/10.1038/nature06880CrossRefPubMedGoogle Scholar
  112. Rachmilewitz D, Katakura K, Karmeli F, Hayashi T, Reinus C, Rudensky B, Akira S, Takeda K, Lee J, Takabayashi K, Raz E (2004) Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 126(2):520–528.  https://doi.org/10.1053/j.gastro.2003.11.019CrossRefPubMedGoogle Scholar
  113. Reber SO, Siebler PH, Donner NC, Morton JT, Smith DG, Kopelman JM, Lowe KR, Wheeler KJ, Fox JH, Hassell JE Jr, Greenwood BN, Jansch C, Lechner A, Schmidt D, Uschold-Schmidt N, Fuchsl AM, Langgartner D, Walker FR, Hale MW, Lopez Perez G, Van Treuren W, Gonzalez A, Halweg-Edwards AL, Fleshner M, Raison CL, Rook GA, Peddada SD, Knight R, Lowry CA (2016) Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice. Proc Natl Acad Sci U S A 113(22):E3130–E3139.  https://doi.org/10.1073/pnas.1600324113CrossRefPubMedPubMedCentralGoogle Scholar
  114. Rhee KJ, Sethupathi P, Driks A, Lanning DK, Knight KL (2004) Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J Immunol 172(2):1118–1124CrossRefGoogle Scholar
  115. Riedler J, Braun-Fahrlander C, Eder W, Schreuer M, Waser M, Maisch S, Carr D, Schierl R, Nowak D, von Mutius E (2001) Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 358(9288):1129–1133CrossRefGoogle Scholar
  116. Rook GA (2013) Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proc Natl Acad Sci U S A 110(46):18360–18367.  https://doi.org/10.1073/pnas.1313731110CrossRefPubMedPubMedCentralGoogle Scholar
  117. Rook GA, Adams V, Hunt J, Palmer R, Martinelli R, Brunet LR (2004) Mycobacteria and other environmental organisms as immunomodulators for immunoregulatory disorders. Springer Semin Immunopathol 25(3–4):237–255.  https://doi.org/10.1007/s00281-003-0148-9CrossRefPubMedGoogle Scholar
  118. Rook GAW, Raison CL, Lowry CA (2013) Microbial “Old Friends”, immunoregulation and psychiatric disorders. In: Heidt PJ, Bienenstock J, Rusch V (eds) The gut mictobiome and the nervous system, vol 26. Old Herborn University, Herborn, pp 61–90Google Scholar
  119. Rook G, Backhed F, Levin BR, McFall-Ngai MJ, McLean AR (2017) Evolution, human-microbe interactions, and life history plasticity. Lancet 390(10093):521–530.  https://doi.org/10.1016/S0140-6736(17)30566-4CrossRefPubMedGoogle Scholar
  120. Rook GAW, Raison CL, Lowry CA (2018) Chapter 2 - Childhood microbial experience, immunoregulation, inflammation, and adult susceptibility to psychosocial stressors and depression. In: Baune BT (ed) Inflammation and immunity in depression. Academic, pp 17–44.  https://doi.org/10.1016/B978-0-12-811073-7.00002-7
  121. Sahlberg B, Wieslander G, Norback D (2010) Sick building syndrome in relation to domestic exposure in Sweden—a cohort study from 1991 to 2001. Scand J Public Health 38(3):232–238.  https://doi.org/10.1177/1403494809350517CrossRefPubMedGoogle Scholar
  122. Sahlberg B, Gunnbjörnsdottir M, Soon A, Jogi R, Gislason T, Wieslander G, Janson C, Norback D (2013) Airborne molds and bacteria, microbial volatile organic compounds (MVOC), plasticizers and formaldehyde in dwellings in three North European cities in relation to sick building syndrome (SBS). Sci Total Environ 444:433–440.  https://doi.org/10.1016/j.scitotenv.2012.10.114CrossRefPubMedGoogle Scholar
  123. Schuijs MJ, Willart MA, Vergote K, Gras D, Deswarte K, Ege MJ, Madeira FB, Beyaert R, van Loo G, Bracher F, von Mutius E, Chanez P, Lambrecht BN, Hammad H (2015) Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science 349(6252):1106–1110.  https://doi.org/10.1126/science.aac6623CrossRefPubMedGoogle Scholar
  124. Schulz O, Pabst O (2013) Antigen sampling in the small intestine. Trends Immunol 34(4):155–161.  https://doi.org/10.1016/j.it.2012.09.006CrossRefPubMedGoogle Scholar
  125. Seedorf H, Griffin NW, Ridaura VK, Reyes A, Cheng J, Rey FE, Smith MI, Simon GM, Scheffrahn RH, Woebken D, Spormann AM, Van Treuren W, Ursell LK, Pirrung M, Robbins-Pianka A, Cantarel BL, Lombard V, Henrissat B, Knight R, Gordon JI (2014) Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159(2):253–266.  https://doi.org/10.1016/j.cell.2014.09.008CrossRefPubMedPubMedCentralGoogle Scholar
  126. Selhub EM, Logan AC, Bested AC (2014) Fermented foods, microbiota, and mental health: ancient practice meets nutritional psychiatry. J Physiol Anthropol 33:2.  https://doi.org/10.1186/1880-6805-33-2CrossRefPubMedPubMedCentralGoogle Scholar
  127. Shao X, Ding X, Wang B, Li L, An X, Yao Q, Song R, Zhang JA (2017) Antibiotic exposure in early life increases risk of childhood obesity: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 8:170.  https://doi.org/10.3389/fendo.2017.00170CrossRefGoogle Scholar
  128. Sheil B, McCarthy J, O’Mahony L, Bennett MW, Ryan P, Fitzgibbon JJ, Kiely B, Collins JK, Shanahan F (2004) Is the mucosal route of administration essential for probiotic function? Subcutaneous administration is associated with attenuation of murine colitis and arthritis. Gut 53(5):694–700CrossRefGoogle Scholar
  129. Shkoporov AN, Clooney AG, Sutton TDS, Ryan FJ, Daly KM, Nolan JA, McDonnell SA, Khokhlova EV, Draper LA, Forde A, Guerin E, Velayudhan V, Ross RP, Hill C (2019) The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26(4):527–541 e525.  https://doi.org/10.1016/j.chom.2019.09.009CrossRefPubMedGoogle Scholar
  130. Sing D, Sing CF (2010) Impact of direct soil exposures from airborne dust and geophagy on human health. Int J Environ Res Public Health 7(3):1205–1223.  https://doi.org/10.3390/ijerph7031205CrossRefPubMedPubMedCentralGoogle Scholar
  131. Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ (2011) Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480(7376):241–244.  https://doi.org/10.1038/nature10571CrossRefPubMedGoogle Scholar
  132. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL (2016) Diet-induced extinctions in the gut microbiota compound over generations. Nature 529(7585):212–215.  https://doi.org/10.1038/nature16504CrossRefPubMedPubMedCentralGoogle Scholar
  133. Sousa A, Frazão N, Ramiro RS, Gordo I (2017) Evolution of commensal bacteria in the intestinal tract of mice. Curr Opin Microbiol 38:114–121.  https://doi.org/10.1016/j.mib.2017.05.007CrossRefPubMedGoogle Scholar
  134. Sozanska B, Blaszczyk M, Pearce N, Cullinan P (2014) Atopy and allergic respiratory disease in rural Poland before and after accession to the European Union. J Allergy Clin Immunol 133(5):1347–1353.  https://doi.org/10.1016/j.jaci.2013.10.035CrossRefPubMedGoogle Scholar
  135. Stein MM, Hrusch CL, Gozdz J, Igartua C, Pivniouk V, Murray SE, Ledford JG, Marques dos Santos M, Anderson RL, Metwali N, Neilson JW, Maier RM, Gilbert JA, Holbreich M, Thorne PS, Martinez FD, von Mutius E, Vercelli D, Ober C, Sperling AI (2016) Innate immunity and asthma risk in amish and hutterite farm children. N Engl J Med 375(5):411–421.  https://doi.org/10.1056/NEJMoa1508749CrossRefPubMedPubMedCentralGoogle Scholar
  136. Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF (2016) The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem Int 99:110–132.  https://doi.org/10.1016/j.neuint.2016.06.011CrossRefPubMedGoogle Scholar
  137. Strachan DP (1989) Hay fever, hygiene, and household size. Brit Med J 299(6710):1259–1260CrossRefGoogle Scholar
  138. Strzępa A, Lobo FM, Majewska-Szczepanik M, Szczepanik M (2018) Antibiotics and autoimmune and allergy diseases: Causative factor or treatment? Int Immunopharmacol 65:328–341.  https://doi.org/10.1016/j.intimp.2018.10.021CrossRefPubMedGoogle Scholar
  139. Su LF, Kidd BA, Han A, Kotzin JJ, Davis MM (2013) Virus-specific CD4(+) memory-phenotype T cells are abundant in unexposed adults. Immunity 38(2):373–383.  https://doi.org/10.1016/j.immuni.2012.10.021CrossRefPubMedPubMedCentralGoogle Scholar
  140. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558 (Pt 1):263-275. doi: https://doi.org/10.1113/jphysiol.2004.063388
  141. Swain MR, Anandharaj M, Ray RC, Parveen Rani R (2014) Fermented fruits and vegetables of Asia: a potential source of probiotics. Biotechnol Res Int 2014:250424.  https://doi.org/10.1155/2014/250424CrossRefPubMedPubMedCentralGoogle Scholar
  142. Tam NK, Uyen NQ, Hong HA, Duc le H, Hoa TT, Serra CR, Henriques AO, Cutting SM (2006) The intestinal life cycle of Bacillus subtilis and close relatives. J Bacteriol 188(7):2692–2700.  https://doi.org/10.1128/JB.188.7.2692-2700.2006CrossRefPubMedPubMedCentralGoogle Scholar
  143. Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, Guyonnet D, Legrain-Raspaud S, Trotin B, Naliboff B, Mayer EA (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144 (7):1394–1401, 1401 e1391–1394.  https://doi.org/10.1053/j.gastro.2013.02.043
  144. Tran HQ, Ley RE, Gewirtz AT, Chassaing B (2019) Flagellin-elicited adaptive immunity suppresses flagellated microbiota and vaccinates against chronic inflammatory diseases. Nat Commun 10(1):5650.  https://doi.org/10.1038/s41467-019-13538-yCrossRefPubMedPubMedCentralGoogle Scholar
  145. Troyer K (1984) Behavioral acquisition of the hindgut fermentation system by hatchling Iguana iguana. Behav Ecol Sociobiol 14 (3):189–193.  https://doi.org/10.1007/BF00299618
  146. Tsui C, Kong EF, Jabra-Rizk MA (2016) Pathogenesis of Candida albicans biofilm. Pathog Dis 74(4).  https://doi.org/10.1093/femspd/ftw018
  147. Van Belleghem JD, Dabrowska K, Vaneechoutte M, Barr JJ, Bollyky PL (2018) Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses 11(1).  https://doi.org/10.3390/v11010010
  148. Vatanen T, Kostic AD, d’Hennezel E, Siljander H, Franzosa EA, Yassour M, Kolde R, Vlamakis H, Arthur TD, Hamalainen AM, Peet A, Tillmann V, Uibo R, Mokurov S, Dorshakova N, Ilonen J, Virtanen SM, Szabo SJ, Porter JA, Lahdesmaki H, Huttenhower C, Gevers D, Cullen TW, Knip M, Group DS, Xavier RJ (2016) Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165(4):842–853.  https://doi.org/10.1016/j.cell.2016.04.007CrossRefPubMedPubMedCentralGoogle Scholar
  149. Vierbuchen T, Bang C, Rosigkeit H, Schmitz RA, Heine H (2017) The human-associated archaeon methanosphaera stadtmanae is recognized through its RNA and induces TLR8-dependent NLRP3 inflammasome activation. Front Immunol 8(1535).  https://doi.org/10.3389/fimmu.2017.01535
  150. von Hertzen L, Hanski I, Haahtela T (2011) Natural immunity. Biodiversity loss and inflammatory diseases are two global megatrends that might be related. EMBO Rep 12(11):1089–1093.  https://doi.org/10.1038/embor.2011.195CrossRefGoogle Scholar
  151. Waltner-Toews D (2013) The origin of feces : what excrement tells us about evolution, ecology, and a sustainable society. ECW, Toronto, ONGoogle Scholar
  152. Wang S, Ahmadi S, Nagpal R, Jain S, Mishra SP, Kavanagh K, Zhu X, Wang Z, McClain DA, Kritchevsky SB, Kitzman DW, Yadav H (2019) Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3-5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions: from C. elegans to mice. GeroScience.  https://doi.org/10.1007/s11357-019-00137-4
  153. Wassermann B, Müller H, Berg G (2019) An apple a day: which bacteria do we eat with organic and conventional apples? Front Microbiol 10(1629).  https://doi.org/10.3389/fmicb.2019.01629
  154. Weber J, Illi S, Nowak D, Schierl R, Holst O, von Mutius E, Ege MJ (2015) Asthma and the hygiene hypothesis. Does cleanliness matter? Am J Respir Crit Care Med 191(5):522–529.  https://doi.org/10.1164/rccm.201410-1899OCCrossRefPubMedGoogle Scholar
  155. Whitlock DR, Feelisch M (2009) Soil bacteria, nitrite, and the skin. In: Rook GAW (ed) The hygiene hypothesis and darwinian medicine. Progress in inflammation research. Birkhäuser, Basel, pp 103–116CrossRefGoogle Scholar
  156. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 106(10):3698–3703.  https://doi.org/10.1073/pnas.0812874106. 0812874106 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  157. Yaffe E, Relman DA (2019) Tracking microbial evolution in the human gut using Hi-C reveals extensive horizontal gene transfer, persistence and adaptation. Nat Microbiol.  https://doi.org/10.1038/s41564-019-0625-0
  158. Zelante T, Iannitti RG, Fallarino F, Gargaro M, De Luca A, Moretti S, Bartoli A, Romani L (2014) Tryptophan feeding of the IDO1-AhR axis in host-microbial symbiosis. Front Immunol 5:640.  https://doi.org/10.3389/fimmu.2014.00640CrossRefPubMedPubMedCentralGoogle Scholar
  159. Zhao G, Vatanen T, Droit L, Park A, Kostic AD, Poon TW, Vlamakis H, Siljander H, Härkönen T, Hämäläinen A-M, Peet A, Tillmann V, Ilonen J, Wang D, Knip M, Xavier RJ, Virgin HW (2017) Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children. Proc Natl Acad Sci U S A 114(30):E6166–E6175.  https://doi.org/10.1073/pnas.1706359114CrossRefPubMedPubMedCentralGoogle Scholar
  160. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, Zeng L, Chen J, Fan S, Du X, Zhang X, Yang D, Yang Y, Meng H, Li W, Melgiri ND, Licinio J, Wei H, Xie P (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 21(6):786–796.  https://doi.org/10.1038/mp.2016.44CrossRefPubMedGoogle Scholar
  161. Zhou Q, Wang H, Schwartz DM, Stoffels M, Park YH, Zhang Y, Yang D, Demirkaya E, Takeuchi M, Tsai WL, Lyons JJ, Yu X, Ouyang C, Chen C, Chin DT, Zaal K, Chandrasekharappa SC, Hanson EP, Yu Z, Mullikin JC, Hasni SA, Wertz IE, Ombrello AK, Stone DL, Hoffmann P, Jones A, Barham BK, Leavis HL, van Royen-Kerkof A, Sibley C, Batu ED, Gul A, Siegel RM, Boehm M, Milner JD, Ozen S, Gadina M, Chae J, Laxer RM, Kastner DL, Aksentijevich I (2016) Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet 48(1):67–73.  https://doi.org/10.1038/ng.3459CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Centre for Clinical Microbiology, Department of InfectionUCL (University College London)LondonUK

Personalised recommendations