Skip to main content

Discussions, Conclusions and Outlook on Further Research

  • Chapter
  • First Online:
Heat Pump Controls to Exploit the Energy Flexibility of Building Thermal Loads

Part of the book series: Springer Theses ((Springer Theses))

  • 479 Accesses

Abstract

The obtained results are put into perspective and discussed in this section. In particular, the development, tuning and computational efforts of the flexibility controllers are discussed, as well as the differences between costs or emissions optimization, and the practical barriers still hindering the large-scale deployment of such controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Killian M, Kozek M (2016) Ten questions concerning model predictive control for energy efficient buildings. Build Environ 105:403–412. ISSN: 03601323. https://doi.org/10.1016/j.buildenv.2016.05.034

  2. Thieblemont H, Haghighat F, Ooka R, Moreau A (2017) Predictive control strategies based on weather forecast in buildings with energy storage system: a review of the state-of-the art. Energy Build 153:485–500. ISSN: 03787788. https://doi.org/10.1016/j.enbuild.2017.08.010

  3. Bacher P, Madsen H (2011) Identifying suitable models for the heat dynamics of buildings. Energy Build 43(7):1511–1522. ISSN: 03787788. https://doi.org/10.1016/j.enbuild.2011.02.005

  4. Reynders G, Diriken J, Saelens D (2014) Quality of grey-box models and identified parameters as function of the accuracy of input and observation signals. Energy Build 82:263–274. ISSN: 03787788. https://doi.org/10.1016/j.enbuild.2014.07.025

  5. Ferracuti F, Fonti A, Ciabattoni L, Pizzuti S, Arteconi A, Helsen L, Comodi G (2017) Datadriven models for short-term thermal behaviour prediction in real buildings. Appl Energy 204:1375–1387. ISSN: 03062619. https://doi.org/10.1016/j.apenergy.2017.05.015

  6. Prívara S, Cigler J, Váňa Z, Oldewurtel F, Sagerschnig C, Žáčeková E (2013) Building modeling as a crucial part for building predictive control. Energy Build 56:8–22. ISSN: 03787788. https://doi.org/10.1016/j.enbuild.2012.10.024

  7. De Coninck R, Magnusson F, Akesson J, Helsen L (2015) Toolbox for development and validation of grey-box building models for forecasting and control. J Build Perform Simul (July):1–16. ISSN: 1940-1493. https://doi.org/10.1080/19401493.2015.1046933

  8. Institute for Housing and Environment (Germany), TABULA project (2016). http://episcope.eu/ (visited on 08/20/2019)

  9. Rouchier S, Jiménez MJ, Castaño S (2019) Sequential Monte Carlo for on-line parameter estimation of a lumped building energy model. Energy Build 187:86–94. ISSN: 03787788. https://doi.org/10.1016/j.enbuild.2019.01.045

  10. Radecki P, Hencey B (2017) Online model estimation for predictive thermal control of buildings. IEEE Trans Control Syst Technol 25(4):1414–1422. ISSN: 10636536. https://doi.org/10.1109/TCST.2016.2587737

  11. Masy G, Georges E, Verhelst C, Lemort V (2015) Smart grid energy flexible buildings through the use of heat pumps and building thermal mass as energy storage in the Belgian context. Sci Technol Built Environ 4731(August):800–811. ISSN: 2374-4731. https://doi.org/10.1080/23744731.2015.1035590

  12. Wood G, Day R, Creamer E, van der Horst D, Hussain A, Liu S, Shukla A, Iweka O, Gaterell M, Petridis P, Adams N, Brown V (2019) Sensors, sense-making and sensitivities: UK household experiences with a feedback display on energy consumption and indoor environmental conditions. Energy Res Soc Sci 55(April):93–105. ISSN: 22146296. https://doi.org/10.1016/j.erss.2019.04.013

  13. Kazanci OB, Olesen BW (2014) Sustainable plus-energy houses (Baeredygtige Energi-Plus huse) final report. Elforsk, Technical Report. https://elforsk.dk/sites/elforsk.dk/files/media/dokumenter/elforsk/Slutrapport

  14. Verhelst C, Logist F, Van Impe J, Helsen L (2012) Study of the optimal control problem formulation for modulating air-to-water heat pumps connected to a residential floor heating system. Energy Build 45:43–53. ISSN: 03787788. https://doi.org/10.1016/j.enbuild.2011.10.015

  15. Camacho EF, Bordons C (2007) Model predictive control. Advanced textbooks in control and signal processing, vol 53. Springer, London, pp 1689–1699. ISBN: 978-1-85233-694-3. https://doi.org/10.1007/978-0-85729-398-5

  16. Klein K, Killinger S, Fischer D, Streuling C, Salom J, Cubi E (2016) Comparison of the future residual load in fifteen countries and requirements to grid-supportive building operation. In: Eurosun 2016, Palma deMallorca, Spain, pp 11–14

    Google Scholar 

  17. Hu M, Xiao F, Jørgensen JB, Wang S (2019) Frequency control of air conditioners in response to real-time dynamic electricity prices in smart grids. Appl Energy 242(March):92–106. ISSN: 03062619. https://doi.org/10.1016/j.apenergy.2019.03.127

  18. De Coninck R, Helsen L (2016) Practical implementation and evaluation of model predictive control for an office building in Brussels. Energy Build 111:290–298. ISSN: 03787788. https://doi.org/10.1016/j.enbuild.2015.11.014

  19. Bundersverband Wärmepumpe, Regularium für das Label “SG Ready” für elektrische Heizungsund Warmwasserw ärmepumpen, Berlin, Germany (2013)

    Google Scholar 

  20. Fischer D, Wolf T, Triebel M-A (2017) Flexibility of heat pump pools: the use of SG-Ready from an aggregator’s perspective. In: 12th IEA heat pump conference, pp 1–12

    Google Scholar 

  21. OpenADR Alliance, OpenADR (2019). https://www.openadr.org/ (visited on 08/19/2019)

  22. SMS-PLC, SmArt BI-directional multi eNergy gAteway (2019). https://sabina-project.eu/mission-objectives/ (visited on 09/15/2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibault Péan .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Péan, T. (2021). Discussions, Conclusions and Outlook on Further Research. In: Heat Pump Controls to Exploit the Energy Flexibility of Building Thermal Loads. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-63429-2_7

Download citation

Publish with us

Policies and ethics