Skip to main content

Rising Trend of Air Pollution and Its Decadal Consequences on Meteorology and Thermal Comfort Over Gangetic West Bengal, India

Part of the Environmental Challenges and Solutions book series (ECAS)

Abstract

Indo-Gangetic Plain is a renowned hotspot of high-level air pollution for the last few decades. Beginning with the northern urban–industrial development, now the pollution sources have spread over its lower catchment at an alarming rate, covering the south of the state West Bengal. Subsiding winds have further escalated the pollution level over this state by carrying pollutants from the upper catchment. Responding to those two factors, the aerosol optical depth over the lower Gangetic plain in West Bengal often crosses a value of 0.6, with an emission of more than 130 metric tons of carbon dioxide annually. This region is mainly dominated by eight distinct land use classes and has diverse pollution sources from industrial emissions, vehicular emissions, domestic pollution to biomass burning. With the rapid urban–industrial progress, the pollution emission is at its high peak in recent history, but not enough remediation policies are taken till date with a poor pollution monitoring status. Outcomes of the WRF-CHEM model indicate an increase of 0.8 °C to 1.2 °C air temperature with 1.5 to 1.8 W/m2 increase of sensible heat flux due to rising air pollution in the lower Gangetic plain of West Bengal. Vertical pressure–temperature profile as well as the boundary layer temperature and surface humidity are found to be affected by certain high pollution periods over the year. The altered atmospheric chemistry by anthropogenic pollution is often found to push the temperature–humidity index level from “mild stress” to “severe stress” category in pre-monsoon seasons, compelling the residents to feel an irritating level of thermal discomfort.

Keywords

  • Air pollution
  • WRF-CHEM
  • Thermal discomfort
  • Lower gangetic plain
  • West Bengal

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-63422-3_32
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-63422-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 32.1
Fig. 32.2
Fig. 32.3
Fig. 32.4
Fig. 32.5
Fig. 32.6
Fig. 32.7
Fig. 32.8
Fig. 32.9
Fig. 32.10
Fig. 32.11
Fig. 32.12
Fig. 32.13
Fig. 32.14
Fig. 32.15
Fig. 32.16
Fig. 32.17

References

  • Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458. https://doi.org/10.1038/nature08019

  • Armstrong DV (1994) Heat stress interaction with shade and cooling. J Dairy Sci 77(7):2044–2050. https://doi.org/10.3168/jds.S0022.0302(94)77149-6

    CAS  CrossRef  PubMed  Google Scholar 

  • Asansol Durgapur Development Authority (2015) Land use and development control plan − 2025 for Asansol sub-division. Government of West Bengal

    Google Scholar 

  • Badarinath KVS, Kharol SK, Sharma AR (2009) Long-range transport of aerosols from agricultural crop residue burning in indo-Gangetic Plains – a study using LIDAR, ground measurements and satellite data. J Atmos Sol Terr Phys 71(1):112–120. https://doi.org/10.1016/j.jastp.2008.09.035

    CrossRef  Google Scholar 

  • Bajani S, Das D (2020) Sustainable planning interventions in tropical climate for urban heat island mitigation - case study of Kolkata. In: Ghosh M (ed) Perception, design and ecology of the built environment. Springer, Cham. https://doi.org/10.1007/978-3-030-25879-5_10

    CrossRef  Google Scholar 

  • Bhargava A, Bunkar N, Aglawe A, Pandey K, Tiwari R, Chaudhury K, Goryacheva IY, Mishra PK (2018) Epigenetic biomarkers for risk assessment of particulate matter associated lung cancer. Curr Drug Targets 19(10):1127–1147. https://doi.org/10.2174/1389450118666170911114342

    CAS  CrossRef  PubMed  Google Scholar 

  • Bhattacharya R, Pal S, Biswas G, Karmakar S, Saha G (2013) Seasonal distribution of comfortability: a regional based study over Kalyani, West Bengal India. Int J Innov Res Sci Technol 2:2856–2862

    Google Scholar 

  • Boucher O et al. (2013) Clouds and aerosols. Climate change 2013: the physical science basis; contribution of working group 1 to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 571–657

    Google Scholar 

  • Central Pollution Control Board (2011) Guidelines for the measurement of ambient air pollutants. NAAQS monitoring and analysis guidelines volume 1. Ministry of Environment and Forests, Government of India

    Google Scholar 

  • Central Statistics Office (2018) Energy statistics 2018. Ministry of Statistics and Programme Implementation, Government of India

    Google Scholar 

  • Chapman HL (2017) Performance test of the Pasquill stability classification scheme. Thesis and Dissertations 1453, University of Wisconsin Milwaukee. UWM Digital Commons

    Google Scholar 

  • Chapman EG, Gustafson WI, Easter RC, Barnard JC, Ghan SJ, Pekour MS, Fast JD (2008) Coupling aerosol-cloud-radiative processes in the WRF-Chem model: investigating the radiative impact of elevated point sources. Atmos Chem Phys 9:945–964

    CrossRef  Google Scholar 

  • Choudhury D, Das K, Das A (2019) Assessment of land use land cover changes and its impact on variations of land surface temperature in Asansol-Durgapur development region. Egy J Remote Sensing Space Sci 22(2019):203–218. https://doi.org/10.1016/j.ejrs.2018.05.004

    CrossRef  Google Scholar 

  • Cohen AJ. 1995(2003) Air pollution and lung cancer: what more do we need to know? Thorax 58:1010–1012. https://doi.org/10.1136/thorax.58.12.1010

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Das S, Dey S, Dash SK, Basil G (2013) Examining mineral dust transport over the Indian subcontinent using the regional climate model, RegCM4.1. Atmos Res 134(2013):64–76. https://doi.org/10.1016/j.atmosres.2013.07.019

    CAS  CrossRef  Google Scholar 

  • Dear RJd, Akimoto T, Arens EA et al (2013) Progress in thermal comfort research over the last twenty years. Indoor Air 23(6):442–461. https://doi.org/10.1111/ina.12046

    CrossRef  PubMed  Google Scholar 

  • Dutta A, Jash T (2014) Studies on energy consumption pattern in mechanized van rickshaws in West Bengal and the problem associated with these vehicles. Energy Procedia 54(2014):111–115. https://doi.org/10.1016/j.egypro.2014.07.253

    CrossRef  Google Scholar 

  • Dutta D, Gupta S, Kistawal CM (2018) Linking LULC change with urban heat islands over 25 years: a case study of the urban-industrial city Durgapur, Eastern India. J Spat Sci. https://doi.org/10.1080/14498596.2018.1537198

  • Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J (2012) Should we apply bias correction to global and regional climate model data? Hydrol Earth Syst Sci Discuss 9:5355–5387. https://doi.org/10.5194/hessd-9-5355-2012.

    CrossRef  Google Scholar 

  • Emmons LK, Walters S, Hess PG (2010) Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART 4). Geosci Model Dev 3:43–67. https://doi.org/10.5194/gmd-3-43-2010

    CrossRef  Google Scholar 

  • Forkel R, Brunner D, Baklanov A et al (2016) A multi model case study on aerosol feedbacks in online coupled chemistry meteorology models within the COST action ES1004 EuMetChem. Air Pollut Model Appl XXIV. https://doi.org/10.1007/978-3-319-24478-5_4

  • Fosu BO, Wang S-YS, Wang S-H, Gillies RR, Zhao L (2017) Greenhouse gases stabilizing winter atmosphere in the Indo-Gangetic plains may increase aerosol loading. Atmos Sci Lett 18:168–174. https://doi.org/10.1002/asl.739

    CrossRef  Google Scholar 

  • Ghosh S, Tripathi SN (2014) Chemical characterization of summertime dust events in Kanpur: insight into the sources and level of mixing with anthropogenic emissions. Aerosol Air Qual Res 14:879–891

    CAS  CrossRef  Google Scholar 

  • Ghude SD, Chate DM, Jena C, Beig G, Kumar R, Barth MC, Pfister GG, Fadnavis S, Pithani P (2016) Premature mortality in India due to PM25 and ozone exposure. Geophys Res Lett 43:4650–4658. https://doi.org/10.1002//2016GL068949.

    CAS  CrossRef  Google Scholar 

  • Government of West Bengal (2018) Report of the controller and auditor general of India on performance audit of pollution in industries of West Bengal (economic sector). Report no. 5

    Google Scholar 

  • Hu X-M, Klein PM, Xue M (2013) Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J Geophys Res Atmos 118(10):490–505

    Google Scholar 

  • Jethva H, Torres O, Field RD, Lyapustin A, Gautam R, Kayetha V (2019) Connecting crop productivity, residue fires, and air quality over Northern India. Sci Rep 2019(9):16594. https://doi.org/10.1038/s41598-019-52799-x

    CAS  CrossRef  Google Scholar 

  • Kar J, Deeter MN, Fishman J et al (2010) Wintertime pollution over the Eastern Indo-Gangetic Plains as observed from MOPITT, CALIPSO and tropospheric ozone residual data. Atmos Chem Phys 10(2010):12273–12283. https://doi.org/10.5194/acp-10-12273-2010

    CAS  CrossRef  Google Scholar 

  • Khan A, Chatterjee S (2016) Numerical simulation of urban heat island intensity under urban-suburban surface and reference site in Kolkata, India. Model Earth Syst Environ 2:71. https://doi.org/10.1007/s40808-016-0119-5

    CrossRef  Google Scholar 

  • Kong X, Forkel R, Sokhi RS (2015) Analysis of meteorology-chemistry interactions during air pollution episodes using online coupled models within AQMEII phase-2. Atmos Environ 115(2015):527–540. https://doi.org/10.1016/j.atmosenv.2014.09.020

    CAS  CrossRef  Google Scholar 

  • Kumar M, Parmar KS, Kumar DB, Mhawish A, Broday DM, Mall RK, Banerjee T (2018) Long-term aerosol climatology over Indo-Gangetic plain: trend, prediction and potential source fields. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2018.02.027

  • Luan T, Guo X, Zhang T (2019) Below cloud aerosol scavenging by different intensity rains in Beijing city. J Meteorol Res 33:126–137

    CrossRef  Google Scholar 

  • Makar PA, Gong W, Milbrandt J, et al. (2014, August) A study of feedbacks between weather and air pollution using GEM-MACH (and several other models!). WWSOC Presentation 18

    Google Scholar 

  • Michael M, Yadav A, Tripathi SN et al (2013) Simulation of trace gases and aerosols over the Indian domain: evaluation of the WRF-CHEM model. Atmos Chem Phys 13:12287–12336. https://doi.org/10.5194/acpd-13-12287-2013

    CrossRef  Google Scholar 

  • Morrison H, McCoy RB, Klein SA et al (2009) Intercomparison of model simulations of mixed-phase clouds observed during the ARM mixed-phase arctic cloud experiment II: multilayer cloud. Q J R Meteorol Soc 135:1003–1019. https://doi.org/10.1002/qj.415

    CrossRef  Google Scholar 

  • MSME Development Institute, Kolkata (2011) District industrial profile 2010-11. Ministry of MSME, Government of India

    Google Scholar 

  • MSME Development Institute, Kolkata (2019) District industrial profile 2018-19. Ministry of MSME, Government of India

    Google Scholar 

  • Ojha N, Sharma A, Kumar M et al (2020) On the widespread enhancement in fine particulate matter across the Indo-Gangetic plain towards winter. Sci Rep 10:5862. https://doi.org/10.1038/s41598-020-62710-8

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • ParthSarathi P, Kumar S, Barat A, Kumar P, Sinha AK, Goswami V (2019) Linkage of aerosol optical depth with rainfall and circulation parameters over the Eastern Gangetic plain of India. J Earth Syst Sci 2019:128–171. https://doi.org/10.1007/s12040-019-1204-8

    CrossRef  Google Scholar 

  • Pfister GG, Avise J, Wiedinmyer C (2011) CO source contribution analysis for California during ARCTAS-CARB. Atmos Chem Phys 11:7515–7532. https://doi.org/10.5194/acp-11-7515-2011.

    CAS  CrossRef  Google Scholar 

  • Rosenfield D (2000) Suppression of rain and snow by urban and industrial air pollution. Science 287(5459):1793–1796

    CrossRef  Google Scholar 

  • Rosenfield D, Lohman U, Raga GB, O’Dowd CD, Kulmala M, Fuzzi S, Reissell a, Andreae MO (2008) Flood or draught: how do aerosols affect precipitation? Science 321(5894):1309–1313

    CrossRef  Google Scholar 

  • Roy Chowdhury I (2015) Traffic congestion and environmental quality: a case study of Kolkata city. Int J Hum Soc Sci Invent 4(7):20–28

    Google Scholar 

  • Saikia A, Pathak B, Singh P, Bhuyan PK, Adhikary B (2019) Multi-model evaluation of meteorological drivers, air pollutants and quantification of emission sources over the upper Brahmaputra basin. Atmosphere 10(703):1–28. https://doi.org/10.3390/atmos10110703.

    CrossRef  Google Scholar 

  • Sansaniwal SK, Mathur J, Garg V, Gupta J (2020) Review of studies on thermal comfort in Indian residential building. Sci Technol Built Environ. https://doi.org/10.1080/23744731.2020.1724734

  • Sapkota TB, Jat ML, Aryal JP, Jat RK, Khatri-Chhetri A (2015) Climate change adaptation, greenhouse gas mitigation and economic profitability of conservation agriculture: some examples from cereal systems of Indo-Gangetic Plains. J Integr Agric 14(8):1524–1533. https://doi.org/10.1016/S2095-3119(15)61093-0

    CrossRef  Google Scholar 

  • Sarkar R, Maity P, Roy D (2013) Trends in climate of West Bengal. PARIPEX Indian J Res 2(7). https://doi.org/10.36106/PARIPEX

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, New York

    Google Scholar 

  • Skamarock WC, Klemp JB (2008) A time-split non hydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227(7):3465–3485. https://doi.org/10.1016/j.jcp.2007.01.037

    CrossRef  Google Scholar 

  • Spiegel J, Maystre LY (1998) Environmental pollution control. In: Stellman JM (ed) Encyclopedia of occupational health and safety, vol 4. International Labor Office, Geneva, Switzerland

    Google Scholar 

  • Srivastava AK, Dey S, Tripathi SN (2012) Aerosol characteristics over the Indo-Gangetic basin: implication to regional climate. In: Abdul-Razzak H (ed) Atmospheric aerosols – regional characteristics – chemistry and physics

    Google Scholar 

  • Steadman RG (1984) A universal scale of apparent temperature. J Clim Appl Meteorol 23:1674–1687

    CrossRef  Google Scholar 

  • Talukdar S, Maitra A (2020) Analysis of an aerosol environment in an urban region and its impact on regional meteorology. Meas Anal Remediation Environ Pollut Energy Environ Sustain. https://doi.org/10.1007/978-981-15-0540-9_7

  • Talukdar S, Jana S, Maitra A (2017) Dominance of pollutant aerosols over an urban region and its impact on boundary layer temperature profile. J Geophys Res 122:1001–1014

    CAS  CrossRef  Google Scholar 

  • Thom EC (1959) The discomfort index. Weatherwise 12(2):57–60

    CrossRef  Google Scholar 

  • Tripathi SN, Dey S, Tare V, Satheesh SK (2005) Aerosol black carbon radiative forcing at an industrial city in northern India. Geophys Res Lett 32. https://doi.org/10.1029/2005g1022515.

  • Tripathi SN, Pattnaik A, Dey S (2007) Aerosol indirect effect over Indo-Gangetic plain. Atmos Environ 41(2007):7037–7047

    CAS  CrossRef  Google Scholar 

  • Wang K, Aktas YD, Malki-Epshtein L (2019) Urban heat island modelling of a tropical city: case of Kuala Lumpur. Geosci Lett 6(4):2019

    Google Scholar 

  • Yakubu OH (2017) Addressing environmental health problems in Ogoniland through implementation of United Nations Environment Program recommendations: environmental management strategies

    Google Scholar 

  • Yildizel SA, Kaplan G, Arslan Y, Yildirim MS, Ozturk AU (2015) A study on the effect of weather conditions on the worker health and performance in a construction site. J Eng Res Appl Sci 4(1):291–295

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to ISRO for funding the project numbered ISRO/RES/4/625/2015-16 and to Dr. C. M. Kistawal, senior scientist and head, Atmospheric Science Division, ISRO SAC, Ahmedabad, India for his guidance and support as this project’s focal person.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, D., Gupta, S. (2021). Rising Trend of Air Pollution and Its Decadal Consequences on Meteorology and Thermal Comfort Over Gangetic West Bengal, India. In: Shit, P.K., Adhikary, P.P., Sengupta, D. (eds) Spatial Modeling and Assessment of Environmental Contaminants. Environmental Challenges and Solutions. Springer, Cham. https://doi.org/10.1007/978-3-030-63422-3_32

Download citation