Skip to main content

DR Detection Using Optical Coherence Tomography Angiography (OCTA): A Transfer Learning Approach with Robustness Analysis

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12069)

Abstract

OCTA imaging is an emerging modality for the discovery of retinal biomarkers in systemic disease. Several studies have already shown the potential of deep learning algorithms in the medical domain. However, they generally require large amount of manually graded images which may not always be available. In our study, we aim to investigate whether transfer learning can help in identifying patient status from a relatively small dataset. Additionally, we explore if data augmentation may help in improving our classification accuracy. Finally, for the first time, we propose a validation of our model on OCTA images acquired with a different device. OCTA scans from three different groups of participants were analysed: diabetic with and without retinopathy (DR and NoDR, respectively) and healthy subjects. We used the convolutional neural network architecture VGG16 and achieved \(83.29\%\) accuracy when classifying DR, NoDR and Controls. Our results demonstrate how transfer learning enables fairly accurate OCTA scan classification and augmentation based on geometric transformations helps in improving the classification accuracy further. Finally, we show how our model maintains consistent performance across OCTA imaging devices, without any re-training.

Keywords

  • Optical coherence tomography angiography
  • Transfer learning
  • OCTA devices
  • Diabetic retinopathy

R. Andreeva and A. Fontanella—these authors contributed equally.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alam, M., Zhang, Y., Lim, J.I., Chan, R.V., Yang, M., Yao, X.: Quantitative optical coherence tomography angiography features for objective classification and staging of diabetic retinopathy. Retina 40(2), 322–332 (2020)

    Google Scholar 

  2. Alam, M.N., Son, T., Toslak, D., Lim, J.I., Yao, X.: Quantitative artery-vein analysis in optical coherence tomography angiography of diabetic retinopathy. In: Ophthalmic Technologies XXIX, vol. 10858, p. 1085802. International Society for Optics and Photonics (2019)

    Google Scholar 

  3. Baker, M.L., Hand, P.J., Wang, J.J., Wong, T.Y.: Retinal signs and stroke: revisiting the link between the eye and brain. Stroke 39(4), 1371–1379 (2008)

    CrossRef  Google Scholar 

  4. Beede, E., et al.: A human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2020)

    Google Scholar 

  5. House of Commons Health Committee and others: Managing the care of people with long-term conditions. Second report of session, vol. 1, pp. 1–89 (2014)

    Google Scholar 

  6. Cunha-Vaz, J.G., Koh, A.: Imaging Techniques, vol. 10, pp. 52–64 (2018). https://doi.org/10.1159/000487412

  7. Decencière, E., et al.: Feedback on a publicly distributed image database: the Messidor database. Image Anal. Stereol. 33(3), 231–234 (2014)

    CrossRef  Google Scholar 

  8. Díaz, M., Novo, J., Cutrín, P., Gómez-Ulla, F., Penedo, M.G., Ortega, M.: Automatic segmentation of the foveal avascular zone in ophthalmological OCT-A images. PLOS ONE 14(2), e0212364 (2019)

    CrossRef  Google Scholar 

  9. Donahue, J., et al.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647–655 (2014)

    Google Scholar 

  10. Frost, S., et al.: Retinal vascular biomarkers for early detection and monitoring of Alzheimer’s disease. Transl. Psychiatry 3(2), e233 (2013)

    CrossRef  Google Scholar 

  11. Giarratano, Y., et al.: Automated and Network Structure Preserving Segmentation of Optical Coherence Tomography Angiograms. arXiv preprint arXiv:1912.09978 (2019)

  12. Hong, J.T., Sung, K.R., Cho, J.W., Yun, S.C., Kang, S.Y., Kook, M.S.: Retinal nerve fiber layer measurement variability with spectral domain optical coherence tomography. Korean J. Ophthalmol. 26(1), 32–38 (2012)

    CrossRef  Google Scholar 

  13. Khadamy, J., Aghdam, K.A., Falavarjani, K.G.: An update on optical coherence tomography angiography in diabetic retinopathy. J. Ophthalmic Vis. Res. 13(4), 487 (2018)

    CrossRef  Google Scholar 

  14. Le, D., Alam, M., Miao, B.A., Lim, J.I., Yao, X.: Fully automated geometric feature analysis in optical coherence tomography angiography for objective classification of diabetic retinopathy. Biomed. Opt. Exp. 10(5), 2493–2503 (2019)

    CrossRef  Google Scholar 

  15. Le, D., Alam, M.N., Lim, J.I., Chan, R., Yao, X.: Deep learning for objective OCTA detection of diabetic retinopathy. In: Ophthalmic Technologies XXX, vol. 11218, p. 112181P. International Society for Optics and Photonics (2020)

    Google Scholar 

  16. Li, F., Liu, Z., Chen, H., Jiang, M., Zhang, X., Wu, Z.: Automatic detection of diabetic retinopathy in retinal fundus photographs based on deep learning algorithm. Trans. Vis. Sci. Technol. 8(6), 4 (2019)

    CrossRef  Google Scholar 

  17. Li, X., Hu, X., Yu, L., Zhu, L., Fu, C.W., Heng, P.A.: CANet: cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading. IEEE Trans. Med. Imaging 39(5), 1483–1493 (2019)

    CrossRef  Google Scholar 

  18. Lin, G.M., et al.: Transforming retinal photographs to entropy images in deep learning to improve automated detection for diabetic retinopathy. J. Ophthalmol. 2018, 1–6 (2018)

    CrossRef  Google Scholar 

  19. MacGillivray, T., Trucco, E., Cameron, J., Dhillon, B., Houston, J., Van Beek, E.: Retinal imaging as a source of biomarkers for diagnosis, characterization and prognosis of chronic illness or long-term conditions. Br. J. Radiol. 87(1040), 20130832 (2014)

    CrossRef  Google Scholar 

  20. Mwanza, J.C., Gendy, M.G., Feuer, W.J., Shi, W., Budenz, D.L.: Effects of changing operators and instruments on time-domain and spectral-domain OCT measurements of retinal nerve fiber layer thickness. Ophthalmic Surg. Lasers Imaging Retina 42(4), 328–337 (2011)

    CrossRef  Google Scholar 

  21. Qayyum, A., Qadir, J., Bilal, M., Al-Fuqaha, A.: Secure and robust machine learning for healthcare: A survey. arXiv preprint arXiv:2001.08103 (2020)

  22. Sasongko, M., Wong, T., Nguyen, T., Cheung, C., Shaw, J., Wang, J.: Retinal vascular tortuosity in persons with diabetes and diabetic retinopathy. Diabetologia 54(9), 2409–2416 (2011)

    CrossRef  Google Scholar 

  23. Sayres, R., et al.: Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmology 126(4), 552–564 (2019)

    CrossRef  Google Scholar 

  24. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 806–813 (2014)

    Google Scholar 

  25. Takase, N., Nozaki, M., Kato, A., Ozeki, H., Yoshida, M., Ogura, Y.: Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 35(11), 2377–2383 (2015)

    CrossRef  Google Scholar 

  26. Tanner, M.A., Wong, W.H.: The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 82(398), 528–540 (1987)

    CrossRef  MathSciNet  Google Scholar 

  27. Vadalà, M., Castellucci, M., Guarrasi, G., Terrasi, M., La Blasca, T., Mulè, G.: Retinal and choroidal vasculature changes associated with chronic kidney disease. Graefe’s Arch. Clin. Exp. Ophthalmol. 257(8), 1687–1698 (2019)

    CrossRef  Google Scholar 

  28. Wagner, S.K., et al.: Insights into systemic disease through retinal imaging-based oculomics. Trans. Vis. Sci. Technol. 9(2), 6 (2020)

    CrossRef  Google Scholar 

  29. Wang, Z., Yin, Y., Shi, J., Fang, W., Li, H., Wang, X.: Zoom-in-Net: deep mining lesions for diabetic retinopathy detection. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 267–275. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_31

    CrossRef  Google Scholar 

  30. Yao, X., Alam, M.N., Le, D., Toslak, D.: Quantitative optical coherence tomography angiography: a review. Exp. Biol. Med. 245(4), 301–312 (2020). https://doi.org/10.1177/1535370219899893. pMID: 31958986

    CrossRef  Google Scholar 

  31. Yoon, S.P., et al.: Retinal microvascular and neurodegenerative changes in Alzheimer’s disease and mild cognitive impairment compared with control participants. Ophthalmol. Retina 3(6), 489–499 (2019)

    CrossRef  Google Scholar 

  32. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)

    Google Scholar 

Download references

Acknowledgement

RA and AF are supported by the United Kingdom Research and Innovation (grant EP/S02431X/1), UKRI Centre for Doctoral Training in Biomedical AI at the University of Edinburgh, School of Informatics. YG is supported by the Medical Research Council (MRC). MOB is supported by grants from EPSRC (EP/R029598/1, EP/R021600/1, EP/T008806/1), Fondation Leducq (17 CVD 03), and the European Union’s Horizon 2020 research and innovation programme under grant agreement No 801423.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rayna Andreeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andreeva, R., Fontanella, A., Giarratano, Y., Bernabeu, M.O. (2020). DR Detection Using Optical Coherence Tomography Angiography (OCTA): A Transfer Learning Approach with Robustness Analysis. In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2020. Lecture Notes in Computer Science(), vol 12069. Springer, Cham. https://doi.org/10.1007/978-3-030-63419-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63419-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63418-6

  • Online ISBN: 978-3-030-63419-3

  • eBook Packages: Computer ScienceComputer Science (R0)